
APPENDIX A: CALCULATION OF DIVARIANT PHASE RELATIONS 

The system of equilibrium conditions in the divariant region a+@ consists of equations (cf. 

equation (2-3)) of the form: 

We may define difference functions, F, such that: 

FiffB 5 aiff - G! , 

for each component i, and we may then seelc solutions to equations of the form: 

F~.@(XP, x!, P, T)  = o . 
In the divariant region, the requisite system of equations is simply: 

Fp4(xp, X!, P, T)  = 0 

F~(xP . ,  xp, P, T = o . 1 
i 

Where G4 = 1 - X? for any given phase 4. 

To solve for the case of equilibrium involving all three phases a, 8, and 7, we need only 

I 

include two more equations - those involving either the a-7 or the @-7 difference functions - i 
I 

in this system. I I 
I , 

In order to solve the system, we may employ Newton's method [cf. Gerald and Wheatley, ! 
I 

1984, pp. 133-1391 to reduce the solution of the system of non-linear equations to iterations of 

solutions of systems of linear equations. We accomplish this by developing the first-order ( i e . ,  

linear) Taylor series approximation [cJ. Hurley, 1980, pp. 710-7141 to each function Fi, so that: 

where each function Fi and its derivatives are evaluated at the appropriate approximate root 

6 8 
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Xtold. 1 i 
We may use forward finite differences [cf. Gerald and Wheatley, 1984, pp. 233-2381 for the 

I 
1 calculation of derivatives, so that: 
I 

where 6 is some small finite perturbation parameter. 

The linear systems (A-1) may be solved by a matrix method, such as Gaussian elimination 

employing partial pivoting [cf. Gerald and Wheatley, 1984, pp. 88-95]. Each solution of a sys- 

tem such as (A-1) will give the correction factors (x&,,- xfOld) by which the previous approxi- 

mate solution xtOld must be modified, and hence values for x?,,,, may be obtained for all per- 

tinent phases 4. These corrections may be applied iteratively until the absolute differences 

between consecutive solutions fall below some arbitrary tolerance value. Note that, when solv- 

ing the univariant problem for three coexisting phases numerically, it may be necessary to scale 

the pressure variable to the same order of magnitude as the composition (mole fraction) vari- 

ables ( i . e . ,  order lo-') in order to avoid forming a nearly singular matrix during linearization. 

Initial estimates of the solution variables for Newton's method may be obtained as follows. 

The partial molar free energy of MgzSi04 in the a phase is given by: 

In equation (A-2), G$g2Si04,T refers to the free energy of pure Mg2Si04 in the a phase at tem- 

perature T and 1 bar. Equilibrium between a and @ phases gives the conditions: 
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- ' 1  / I 

G ~ g $ i ~ 4  - G$g$i~4 = AGM"$~O, = O 
- 

aL2*io4 - G$+io4 = AGF",~"IO, = 0 . I' 
Upon constructing equations similar to (A-2) for the /3 phase and for the Fe2Si04 components, 

the above may be expanded to give: I / 

I 
P 

A G ; ~ ~ ~  = AG%$~~I(T) + $ A V M " $ ~ ~ ~ ~ P (  + RT in K G ~ ~ ,  = o 
1 

P (A-3) 

A G 2 g O 4  = A G ~ $ ~ ~ ~ T )  + $ A V ~ $ ~ ~ , ~ P I  + R T  In ~ $ 3 ~ ~  = 0 , 
1 

where the equilibrium constants (the K ~ ~ @ ' s )  are given by: 

We may begin by assuming an ideal single-site binary solid solution (i.e., = xi6)) so that: 

Upon solving these two equatiow in two unknowns (the xdeio4's), we obtain: 

We may now solve the two equations (A-3) simultaneously for the two unknown equilibrium 
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compositional estimate. 

This estimation process is easily extended to four equations in four unknowns, for approxi- 

mation to the solution of the case of univariant equilibrium involving all three phases, by the 

inclusion of suitable expressions involving K ~ " + ~ .  
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APPENDIX B: MINIMIZATION OF FREE ENERGY 

The problem of free energy minimization is to determine the relative amounts of a set of 

components which define the minimum value of the Gibbs free energy of the system a t  a pres- 

sure and temperature of interest and a fixed bulk chemical composition. Here we examine a 

steepest descent method [cf. Storey and Van Zeggeren, 19641, which utilizes only first order 

derivatives, and a quasi-Newton method [cf. Gill et al., 1981, pp. 116-1261, which utilizes second 

order derivatives, for computing the minimum of the Gibbs free energy function subject to the 

constraint of constant bulk composition. Finally, we discuss the relative practical utility of 

these two methods. 

Steepest Descent Method 

The problem is to minimize the free energy G of the system under consideration in terms of 

the chemical potentials ci and amounts ni of the N components i comprising the system, 

namely: 

N - 
G CGin i  = minimum . 

i= 1 

The constraint of constant bulk chemical composition may be formulated in terms of the mass 

balance conditions: 

Here we have fixed the bulk composition in terms of the fundamental oxides in the system; aji is 

the number of moles of oxide j in one mole of component i, and Yj is the total number of moles 

of oxide j in the system. Upon introducing a search parameter A, the differential forms of equa- 

tions (B-l) and (B-2) become: 

subject to: 
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where we haye used the Gibbs-Duhem equation [cf. Denbigh, 1981, p. 931 at constant pressure 

and temperature: 

in the differentiation of equation (B-1). In order to prevent the ni from assuming nonphysical 

negative values, we adopt the change of variables: 

ni s exp(vi) . 
Hence, the equations (B-3) and (B-4) become: 

I , 

I 

1 -- dG - CGiniK - dvi 

i 
i=1 

I Ea..n.- drli = 0 , j=l, . 
i=l ' dX 

,M.  

j At any given composition {n!,)? (given by the values r;), we find the direction of steepest des- 

dvi dG cent by determining the N values of the - for which - is an extremum. Upon introducing 
dX dX 

I 

an additional normalization condition, our problem becomes: 
I 

where the G{ represent the chemical potentials of the N components at the composition {n;)?. 

Applying the method of Lagrange multipliers [cf. Hurley, 1980, pp. 223-2281) we obtain: 

d ~ i  
for the M+1 Lagrange multipliers v and tj. We are solving for the N values of - at  the 

dX 
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d2vi 
composition {n:)?; the - 

dX2 
may take on any arbitrary values; hence we have: 

- d ~ i  1.4 
Ginf - 2v- - xcja j in i  = 0 , i=1, . . ,N . 

'A j=1 (B-8) 

Upon multiplying by akin!,, summing over all N components i, and applying the mass balance 

1 condition (B-4), we arrive at: 
i 

I 
I We may solve this system of M linear equations for the M unknown vaIues of the fj using such I 

I 
I 

standard techniques as Gaussian elimination with partial pivoting [cf. Gerald and Wheatley, 

1984, pp. 88-95], and from equation (B-6) we have: 

where v is chosen to satisfy the normalization condition comprising the third of equations (B-5). 

We now repeat the above procedure, obtaining our new composition {iii)lN from the values of iji 

given by: 

where the sign and magnitude of AX are chosen by an accurate line search technique [c& Gill et 

al., 1981, pp. 100-1021 so as to produce a sufficient decrease in the free energy G. 

This procedure may be repeated iteratively until no further sufficient decrease in the free 

energy G can be achieved with suitable variations in composition. In practice, it is often useful 

t o  impose the mass-balance constraints (B-2) a t  every iteration to prevent the compositional 

drift which attends the use of finite values of AX. 

Quasi-Newton Method 

The problem is to find the compositions ni a t  which the free energy G of the system attains 

r 
a minimum: 
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il,l / I  

i 
1 1 
i 
1 7 5 

I 

d I 
G(n) = p n  = minimum , (B-7) i 

I 

I subject to constant bulk composition formulated in terms of the mass balance constraints: 

! 
c ( n ) = A n - y = O .  

i 
(B-8) 

Here a and n are N-element vectors whose ith elements are the chemical potential and number 

of moles, respectively, of component i; y is an M-element vector whose jth element is the total 

number of moles of oxide j in the system, and A is an MXN matrix whose ijth element is the 

number of moles of oxide j in one mole of component i. In order to ensure that the composi- 

tions ni do not take on nonphysical negative values, we adopt the change of variables: 

q = exp(qi) . 
We now introduce a quadratic penalty function formulation [cf. Gill et al., 1981, p. 2081, 

transforming equations (B-7) and (B-8) into: 

f(q) = G(q) - ~ c ( q ) ~ c ( q )  = minimum , (B-9) 

where 0 is some scalar penalty parameter. Given an initial estimate of the composition q', we 

expand4 our new objective function f(q) in a second order Taylor series [cf. Hurley, 1980, pp. 

710-7141 about q': 

Here g is the gradient vector evaluated a t  q = q': 

== vflvl, 

and H is the symmetric N X N  Hessian matrix such that: 

Now if H is positive definite [cf. Gill et al., 1981, p. 251, then the minimum of f(q) is given by: 

v f = g +  q - q ' H  = 0 ,  ( 1 
so that we may obtain our next compositional estimate i j  from: 
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f i = q ' - ~ H - ~ ~ ,  (B- 1 1) 

where E is chosen by line search [cf. Gill et al., 1981, 100-1021 so as to produce a sufficient 

decrease in f(q). Whiie we may compute the gradient vector g at each iteration by a finite 

difference method [cf. Gerald and Wheatley, 1984, pp. 233-2381, the determination of the inverse I 

Hessian matrix .H-' a t  each iteration is an imposing computational problem. We proceed by 

beginning with an initial estimate Q for H-l, the identity matrix I for example, and updating 

the second order information in Q at  each iteration. Our new compositional estimate ij from 

equation (B-11) now becomes: 

i j = r ] ' - e Q g .  

Since, from equation (B-lo), we have that: 
I 
i 

we correct Q for the next iteration by an "update matrix" D , namely: 

such that 4 also satisfies condition (B-12): 

(B- 12) 

6 ( v f l l - g )  - 6 - r l .  

From the numerous possible choices [cf. Gill et al., 1981, pp. 117-1201 for the form of D , we 

have chosen the Davidon-Fletcher-Powell (DFP) [Davidon, 1959; Fletcher and Powell, 19631 

update formula: 

where: 

r = i j - q 1  .= o f i t -  v f 1 4 = & - g .  

This DFP update has the property that if the initial approximation to the inverse Hessian Q is 

positive definite, then all subsequent updated estimates 4 are also positive definite. 
i 
/!I 
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This procedure may be repeated iteratively until no further sufficient decrease in the objec- 

tive function f(q) can be achieved with suitable variations in composition. 

Relative Utility of Methods 

The steepest descent method discussed above is relatively efficient in that few evaluations of 

the objective function are required for each determination of new compositional estimates. 

However, inasmuch as this method utilizes only first-order information about the objective func- 

tion, i t  tends to behave very poorly near the solution so that a large number of iterations pro- 

duce only negligible progress toward the minimum [Gill et al., 1981, pp. 103-1041. The quasi- 

Newton method, on the other hand, takes advantage of second-order information about the 

objective function. Thus i t  converges relatively rapidly towards a solution, even in the region 

near the minimum. This method, however, is relatively expensive in terms of computation, with 

numerous evaluations of the objective function being required for each determination of new 

compositional estimates. A good strategy for the implementation of these two methods, then, 

would be to  employ the efficient steepest descent method initially and to switch to  the rapidly 

converging quasi-Newton method in the region near the minimum. 
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APPENDIX a: SOLUTION OF NONLINEAR EQUATIONS 

In this section we discuss the application of Newton's method [ c f .  Gerald and Wheatley, 

1984, pp. 133-1391 to the solution of nonlinear equations. Given a nonlinear function f(x), we 

wish to find a value of x such that: 

f(x) = 0 . (C-1) 

If we have some estimate x' of the solution, we may expand the function f about x' in a first- 

order Taylor series [cf. Hurley, 1980, pp. 710-7141: 

f(x) = f(x9 + g (x - XI) , 
where g is the first derivative of f evaluated at x-x': 

Thus, from equations (C-1) and (C-2), we have that: 

f(x9 + g(x -XI)  = 0 , 

so that we may obtain our next estimate 2 of the solution from: 

We may repeat this process iteratively and refine our compositional estimate to within some 

arbitrary precision. 
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