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Seismic velocity anomalies and scatterers of seismic energy in the lower mantle often are 
attributed to subducted oceanic lithosphere.  In particular, silica-saturated basalts in oceanic 
crust (MORB) under lower mantle conditions should contain high-pressure phases of free 
silica among assemblages otherwise dominated by silicate perovskite.  Free silica phases such 
as stishovite are expected to generate seismic velocity anomalies that are fast by a few percent 
relative to surrounding ultramafic peridotite or harzburgite assemblages (Mattern et al. 2002, 
Bina 2003a, Ricard et al. 2005), and post-stishovite phases such as CaCl2-structured silica 
may also generate locally slow shear-wave velocity anomalies due to displacive shear-mode 
transitions (Bina 2003b, Lakshtanov 2007, Konishi et al. 2008). 
 
Such models, however, must address the thermodynamic instability of free silica phases in the 
presence of peridotites or harzburgites, as the silica will react with adjacent ferropericlase 
(magnesiowüstite) to form silicate perovskite.  Thus, any free silica phases preserved in the 
lower mantle may persist as armored relics, in which silica phases are insulated from 
surrounding ferropericlase phases by coronas of silicate perovskite.  This parallels the 
situation in crustal metamorphic rocks where, for example, staurolite crystals are often found 
as armored relics within garnet phases or spinel crystals can be found as relics armored by 
staurolite poikiloblasts (Whitney 1991, Gil Ibarguchi et al. 1991).  In crustal metamorphic 
rocks, such relics generally occur at grain scales, as metamorphic fluids facilitate transport 
along grain boundaries.  However, if lower mantle rocks are essentially dry, then larger, 
polycrystalline relics containing assemblages of free silica and silicate perovskite become 
plausible.  In such cases, the sizes of relic silica-bearing assemblages will be limited by the 
rate of diffusion of Si, Mg, or Fe through silicate perovskite coronas, either by volume 
(lattice) diffusion or by dry grain-boundary diffusion. 
 
Assuming effective diffusion coefficients of order 10−18 m/s2, the characteristic length 
L=(D·t)1/2 is ~5 mm over 1 Myr (Ashworth & Sheplev 1997).  High temperatures (~2000 K) 
and pressures (~25 GPa) may increase D by perhaps a factor of ~107 (for Arrhenius activation 
energies ~200 kJ/mol and activation volumes ~2 cm3), yielding L of ~20 m.  This rises to 
~150 m over the ~60 Myr necessary for basalt subducting at ~5 cm/yr to traverse the mantle.  
However, recent experiments suggest unusually low effective diffusion coefficients of only 
10−20 to 10−18 m/s2 in silicate perovskite under lower mantle P,T conditions, yielding 60-Myr 
characteristic lengths of only ~5 cm, potentially rising to ~30 cm if significant grain-boundary 
diffusion (from grain-size reduction) occurs (Yamazaki et al. 2000, Holzapfel et al. 2005). 
 
Subducted basaltic crust may be thinned from its initial ~10 km thickness by the effects of 
stretching and folding in the convecting mantle (Metcalfe et al 1995, Van Keken et al 2002), 
and simultaneous diffusion and reaction may consume or aggregate thinner lamellae while 
preserving thicker remnants by isolation of reactants (Ottino 1982, Ottino 1991).  However, in 
the absence of interconnected grain boundary fluids or melts, polycrystalline armored silica 
relics may persist in the lower mantle at scales of 1-10 km over time scales of order 100 Myr.  
Lower mantle seismic scatterers exhibit velocity anomalies of a few percent over just such 
length scales, of order 1-10 km (Hedlin et al. 1997, Cormier 1999, Kaneshima & Helffrich 
1999, Niu et al. 2003, Kaneshima 2003, Cao & Romanowicz 2007, Rost et al. 2008). 
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