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ABSTRACT

We discuss the nature of the various factors contributing to the ampli-
tude of a teleseismic body wave in the context of a geometrical ray solu-
tion, specifically: the radiation of elastic waves into an elastic medium
by a point source; the radiation patterns resulting from the orientation
of the double-couple in space; the effect of propagation through a radi-
ally heterogeneous Earth, known as geometrical spreading; the effect of
anelastic attenuation; the contribution of depth phases to the seismo-
gram,; and finally the influence of distance on the receiver response
function. For each of these parameters, we emphasize the physical
arguments underlying the exact algebraic expressions of the various fac-
tors contributing to the seismic amplitude, Finally, we discuss the
extension of the geometrical ray solution to deep seismic sources.

INTRODUCTION

The problem of calculating the amplitude of a
teleseismic body wave in a lateraily homogeneous
Earth, as generated by a dislocation of known
geomeiry, has long been studied and adequate
algorithms published in the literature. We refer
for example to the Cagniard—de Hoop method
(Helmberger, 1968), the reflectivity method (Fuchs
and Miiller, 1971), and the generalized ray theory
{Chapman, 1978).

A simple and reasonably accurate algorithm is
the so-called geometrical ray solution, as described
for example in Chapter 4 of Aki and Richards’
(1980} textbook (hereafter ARB0). While this
method has significant limitations (for example, it
cannot be applied at the turning point of a ray, nor
can it handle caustics), it allows the computation
of long-period synthetic waveshapes of a quality
acceptable in many seismological problems.

This aigorithm has evolved from such works
as Langston and Helmberger’'s (1975) and
Kanamori and Stewart’s (1976; hereafter KS76).
While the formule published in the original
research papers are of course correct, they occa-
sionally derive from rather intricate theories, and
the format of their publication was not geared to a
didactic discussion of their physical meaning. The
purpose of the present paper is therefore to review
the various terms involved in the amplitude of a
teleseismic body wave, and to present a discussion
of their individual contributions, in the hope of
clarifying their physical origin, and of shedding
some light on a matter which, because of the
intrinsic complexity of the underlying theories,
may occasionally appear confusing.

Specifically, we start with K576's Equation (8),
giving the teleseismic amplitude of a P wave
resulting from a shear dislocation. We wish to dis-
cuss all the terms on the basis of simple physical
arguments. We rewrite the equation in the slightly
different notation
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Here, we write the source time function as X(#),
and the travel times of P, pP and sP as 7F PP
and ¥ respectively. In general, we will write an
incidence angle as { for a P—type ray, and § for an
S—type ray. The subscript h relates to angles {(or
characteristic material properties}) at the source
depth k. The asterisk represents the convolution
operator.

Equation (1) outlines that the amplitude of a
teleseismic wave is controfled in very general
terms by:

@ the amplitude radiated in the immediate vicin-
ity of the source by the particular double-
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Fig. 1. Examples of the combination of the phases P, pP and sP into

involved:

the generalized P wave at teleseismic distances. A simple, homo-
geneous half-space is assumed, and the station is due Fast of the
event. Each mechanism is identified (next to the title) by its fami-
liar beachball. The geometry of the rays departing the source is
given on the left diagrams in relation to the focal sphere,
represented as seen sideways, looking North at the source depth.
The diagrams on the right show the relative contribution of direct
P and the reflected phases. The top traces involve only the
source excitadon and reflection at the surface; the bottom ones
involve geometrical spreading, anelastic-attenuation, and convo-
Iution with a WW55N Long-Period instrument. Note that in the
thrust case, pP is initially of the same polarity as P, but ends up
reversed by the reflection, while in the dip-slip case, pP is ini-
tially reversed, and ends up of the same polarity as P, resulting
in a significantly different waveshape. (After 5. Stein,
manuscript in preparation).

M .
— L% RP X¢ - D),

4mpy, a,?
where M, is the seismic moment of the source
with time dependence X(t), RY a radiation
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coefficient, and p, and «, the density and
P-wave velocity at the source;

the effect of the propagation through the elas-
tic solid Earth, known as geometrical spread-
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ing: g—%l, where a is the Earth’s radius;

® the effect of attenuation due to the Farth’s
anelasticity expressed through the convolution
with the attenuation operator Q;

®  the response of the receiving site (CF) to a ray
incident at the angle i, ; and that of the instru-
ment, expressed through convolution with the
instrument operator I(t), which we will not
discuss here.

In addition, a teleseismic arrival from a shallow
source usually includes the reflected phases, for
example pP and sP in the case of a teleseismic P
wave (see Figure 1); their contribution, normalized
to that of direct P is detailed inside the bracket in
(1), where B, is the §—wave velocity at the source,
and the coefficients Il are reflecion coefficients at
the Earth’s surface. Later sections will justify the
amplitudes of the reflected phases, and will dis-
cuss the application of the formalism to deep
earthquakes.

EXCITATICN AT THE SOURCE

In the immediate vicinity of the hypocenter,
the medium can be regarded as homogeneous and
infinite, and the problem is simply that of its
response to a double-couple of time dependence
X(t), as detailed in Chapter 4 of ARS0. The
seismic displacement in the far field is given by
their Equation (4.87) which can be written in a
slightly different notation
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where, for simplicity, we have dropped the sub-
scripts k. In addition 7 is the distance to the
source, and the frame |, ﬁ, $ is described on Fig-
ure 2, adapted from Figure 4.20 of AR80.

These equations are worthy of comment. The
factor pa® (for P; pp3 for §) in the denominator
can_be explained physically by splitting it into
(pa?)e. The first factor is nothing but the appropri-
ate elastic modulus (or combination of the elastic
moduli K and ) expressing the response of the
medium to a dynamic point force. Combinations of
K and p. are similarly present in all components of
the static Somigliana tensor (which is the solution
to a classic problem in Elasticity: what is the vector
displacement u at a point x in space due to a point
force f at the origin xg?). The additional factor 1/«
or 1/B is introduced when going from a single
force to a double-couple. The field created by a

couple {(or double-couple) is fundamentally the
spatial derivative of that of a force. In the far field,
the spatial variation is primarily due to the propa-
gation of the time history of the source at the velo-
city o, hence the factor 1/a, which goes hand in
hand with the time derivative X of the source time
function,

An immediate consequence of the presence of
the cube of the intrinsic hypocentral velocity in the
denominator is the well known observation that
teleseismic S waves are of significantly larger
amplitude than P waves (in principle 3V3 or about
5 times at periods long enough not to be affected
by anelastic attenuation; see below).

RADIATION PATTERNS

The expression of the radiation patterns RY,
RS, RSH of body waves by double-couples has
been given in a variety of notations, including in
K576 and ARS80. It is important to note that the
orientation conventions of K576 and ARS0 are dif-
ferent, Both authors orient u® positive in the direc-
tion of propagation (positive upwards upon reach-

—

Fig. 2. Source geometry used in this paper. The
fault representation is after K576. The unit vec-
tor d is in the direction of slip of the hanging
block. It is defined by the dip angle § and the
slip angle k. & is the azimuth to the station,
measured counterclockwise from the strike of
the fault. v is the unit vector normal to the faul
plane. The ray leaves at the take-off angle 7, in
the vertical plane containing the great circle to
the station; I, p and & are the unit vectors for
the displacements u®, 4V and uSH, respec-
tively (after ARS0).

o~y ®) W)
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ing the receiver), but ARBO orient u®V with a posi-
tive component upwards in the plane of incidence
(their Figure 4.20 p. 114), which amounts to u%Y
positive towards the source upon reaching the
receiver, whereas KS76 orient u5Y positive away
from the source. Similarly, AR80 orient a5 posi-
tive to the right as one reaches the receiver akmg
the great circle path, whereas K576 orient it posi-
tive to the left. In both cases the frame
P SV, u®H remains direct.

u',u

These radiation coefficients have also been
given for individual moment tensor components.
ARB0’s Equations (4.84 to 4.86; p. 115) are particu-
larly illustrative of the physical nature of the radia-
tion pattern: 1t can easdy be shown that the three

coefficients R¥, R5Y and RH can be written sim-
ply as:
RP =<y My> 3
R = <pM~y>
RSH - < $ Ky >

where M = vd + dv = My/ My is the “directional”
moment tensor of the source. The direction of slip
d is defined as d = w/u; ¥ is the unit vector normal
to the fault plane. A product such as ¢ = »d
means the second-order tensor obtained as
g = v d , and corresponds in matrix terminology
to nght multrplymg ¥ by the transposed of d; the
scalar product of the two vectors would
correspond to left-multiplication. We call M a
“directional” moment tensor to emphasize that it
is scaled, so that its eigenvalues are -1, 0, and +1,
and as such carries information on the orientation
of M; in space, not on its actual amplitude, which
would be related to the size of the earthquake. As
such, M is comparable to a unit vector such as v;

we do not use however the term “"unit moment
tensor”’, which is wusually reserved for the
Kronecker tensor 8;;.

The vector + is the unit vector in the direction
of the departing ray. In a homogeneous medium,
it is equivalent to i. We use circamflexes (%) on all
unit vectors and directional tensors to highlight
their character,

In other words, the radiation pattern of the
source in the direction v is described by the
operator M applied onto the unit vector 4: the
resultmg vector ¥V, is proportional to
«® uf + B w5, and can be regarded as a combined
radiation of seismic motion in the direction -y. In
turn, projecting this vector onto the frame
¥, p, $) of the departing ray gives the three coef-
ficientts in their classical form. This interpretation is
also given in AR80.

While moment tensor formalism may be more
satisfactory from the analytical point of view,

formulee such as KS76's (A-12 o A-14) are more
readily applicable to the familiar visualization of
focal mechanisms through the strike, dip and slip
angles (¢, 8, A as defined on Figure 2).

Equation (3) reflects the perfect symmetry of
the seismic source with respect to d (slip) and »
(normal to the fault), illustrating the classical ambi-~
guity between the two possible mechanisms
corresponding to the same moment tensor. Also,
the vector V obvicusly vanishes in the direction of
the null axis, in which neither P nor § waves are
radiated. Finally Equation (3} can of course be
generalized to the case of non double-couple
sources: for example, one would verify immedi-
ately that an explosion (M isotropic) generates no
5 waves.

GEOMETRICAL SPREADING

Geometrical spreading reflects the fact that the
Earth is of spherical shape and radially heterogene-
ous. As such, the wavefront no longer has spheri-
cal symmetry when it reaches the receiver. As
given by K576, the geometrical spreading for P
waves in a spherically symmetric Earth takes the

form

1/2
Sinih ' 1 dlh

dA

PrnCy
Po &g

g(b) = &

sind cosig

This expression is derived by writing that the
energy flux is conserved along ray tubes between a
small sphere (of radius r,} surrounding the source,
and the wave front at the Earth’s surface (see Fig-
ure 3). The volume density of kinetic energy is in

both cases k = %puzmz, and the energy flux across

a wavefroni of area dS is k-o'd5. In the vicinity of
the hypocenter the wave's amplitude u;, is pro-
portional to 1 (see Equation (2)) and 4s, is r,f
times the solzd angle 2w siniy, | di, |. In the vicin-
ity of the FEarth's surface, the cross-seciion of
wavefront  is  dSy = 2wa sind - g |dA| cosig.

Hence
Pdiy | - uy?

= 2% py @p 4% sinA cosiy 1dA] - ud

&)

2% POy ?’hz Siﬂih M

In other words the factor ?1— in Equation (2} giving
h
1, near the source must be replaced by g(A)a (g
given by (4) and a being the radius of the Farth),
in order to obfain u, at the receiver. An alternate
derivation of this result is given by Ben-Menahem
and Singh (1981, p. 459). These authors call
G = g/a the “divergence coefficient” and tabulate
it, in the case of P waves for a deep source and a
receiver at the crust-mantle interface. As discussed
by K576 [p. 321}, g{A) does not vary drastically
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Fig. 3. Geometrical spreading of a teleseismic body wave. This figure
considers two meighboring rays traveling to distances A and
A+ dA, with hypocentral take-off angles iy, and 4, +diy, (note
that diy is negative). The energy flux across the small element
(shown as a fat segment) dS;, of the focal sphere of radius fy, is
equal to the flux across the section dS, of the wave front at the
receiver end.

between distances of 30° and 90°, for a shallow
source, and of a surface receiver. The above for-
mula also has interesting applications in the vicin-
ity of mantle friplications (Julian and Anderson,
1968) and when considering the decay of seismic
waves with distance in other planets such as Mars
or the Moon.

Equations {2) and (4) are often combined,
resulting in expressions such as (4,88-90) of ARS0,
which involve the combination [p, p}’? a2 l/?]
in the denominator. The physical origin of the
various exponents is best understood by separating
back the various terms into (2) and (4).

The geometrical spreading of S waves is
obtained from (4) by replacing the compressional
velocities a by their shear counterparts £, and the
incident angles / by the corresponding values of ;.
Assuming that the Poisson ratio of the Earth does
not vary with depth, the two coefficients are
equivalent in zall geometries,

ANELASTIC ATTENUATION

The effect of anelastic attenuation is usually
described in terms of a quality factor O for the
relevant body phase. The spectral amplitude of the

body wave must be multiplied by the attenuation
term wr
) )
where 7 is the travel time of the phase. Because of
the general increase of Q with depth, it has been
found empirically that ¢t* = +/Q remains practically
independent of distance, taking the values 1 s for
teleseismic P waves and 4s for S waves (Car-
penter and Flinn, 1965; Anderson and Hart, 1978).
More generally, and assuming that bulk attenua-
tion can be neglected in the Earth’s mantle, one
would find that along identical paths,

2
QP=§~§;QS

the factor 3/4 stemming from the expression

exp [ -

7}

pa? = K + % . In turn, this leads to:

3
Qr = 5 B wor ®)
o
ie, t7/t"5 =026 for a Poisson solid, in good
agreement with the observed numbers. In other
words, § wave attenuation is on the average the
fourth power of that of P waves. For typical
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long-period body waves (with periods around 20
s), the difference in attenuation between P and §
waves will only be a factor of about 2.5 . Since the
S waves start off 5 times larger than P, they are
still very prominent in the record (and often times
larger than P). On the other hand, at short periods
(1 s) the amplitude of § waves is reduced on aver-
age to 1/1000 that of the corresponding P wave. In
practice, short period § waves are difficult to use
at teleseismic distances. Their prominent observa-
tion results from exceptional circumstances, such
as deep sources located below the low-velocity
zone (where most of the attenuation takes place),
and a receiver located above a shield (where the
LVZ is poorly if at all developed).

The application of an attenuation function of
the type (6) in the frequency domain is equivalent
to the convolution of the time-domain synthetic
with an attenuation operator

1 T/ 20
Q (tr QI T) T
T 42 4 12802
2.t
T 74 g?

I

&)

This absorption operator is, however, non-causal,
which reflects the fact that the assumption of a
constant group time 7 in (6) is an oversimplifica-
tion; as a result, more complex expressions of the
operator () are often used.

CONTRIBUTION OF THE DEPTH PHASES

The amplitude of a depth phase, say pP, is
itself controlled by the same terms as for the pri-
mary wave P. Following KS76's notation, we
should differentiate between properties at the
hypocenter (indexed with the subscript k) and
those at the surface, indexed with 0. However, in
order to ease the physical discussion, we will con-
sider shallow sources for which the structural pro-
perties (and hence the incidence angles) can con-
veniently be taken as equivalent at the two loca-
tions. We discuss later some problems arising from
the case of deeper sources.

The excitation by the source of the upgoing
ray in a depth phase is given by an expression
similar to (2) and poses no special problems, the
radiation —pattern
evaluated in the appropriate directions (-1, &
for pP; @ — f, ¢ for sP). Because most sources are
usually very shallow, the anelastic attenuation of
pP (and sP} can be conveniently equaled to that of
P, which amounts to ignoring the attenuation
along the short upgoing ray. We concentrate there-
fore on the reflection coefficients and geometrical
spreading, which must be examined with caution,
especially in the case of the converted rays sP and
ps.

In particular, the correct amplitude of a con-
verted phase such as sP or pS is not simple to
write, since the reflection takes place close to the
source, and thus the upgoing wave cannot be
regarded as a plane wave. On the other hand, the
curvature of the Earth can usually be neglected in
the vicinity of the source, and the problem
becomes Lamb’s problem, as solved by Cagniard
(1939), de Hoop (1960), Helmberger (1974) and
others, and presented in AR80 [Chapter 6]. Our
purpose is not to repeat their analysis, nor to
present a review of the Cagniard—de Hoop
method, but simply o point out the fundamental
steps of the computation, identifying along the
way five factors which control the eventual ampli-
tude of the reflected waves.

The basic philosophy of the Cagniard—de
Hoop method is as follows: reflection coefficients
are easily computed only for plane waves, but
point sources generate spherical waves. Thus the
incident spherical wave is first expanded into an
integral of {real and complex] plane waves (the
Weyl integral), and the reflected wave obtained by
integrating back the plane waves, each weighted
by the appropriate reflection coefficient (the
“Cagniard integral”). The success of the method
stems from the fact that under some approxima-
tions whose conditions of wvalidity are not too
stringent in the far field, the resulting integral can
be approximated by a spherical wave,

Specifically, we start with the potential of the
incident spherical wave (® for a P wave; ¥ for §),
and expand it into plane waves through Weyl's
integral (AR80 6.4). Clearly all reflection and
transmission coefficients depend only on the mag-
nitude of the horizontal wavevector
k, = (k2 + k213, not on its direction. Thus, it is
possible to regroup plane waves with the same k,,
leading to Sommerfeld's integral (AR80 6.11)

explio( ~ 1))
¢ = (10a)
dmpa“r

- g e [ ot explint |z - 2o )dp

dmpo

where & = Va2 - p?, in the case of an upgoing P

wave, and

explio(L —1)]
g

. (10b)
41pB% r
iw —~f . B ' TS
= —L0 wprYexp(ion |z -z | )dp
rop? {J o Jolopr)exp 0

174




Student’s Guide to Teleseismic Body Wave Amplitudes

where 1 = VB2 — p?, in the case of an upgoing $
wave. At real incidences, one has simply
£ = cosi/a and m = cosj/B.

The integration is taken over the ray parameter
p = —.;;- The notation is that of ARS0, except that,

in keeping with Equation (2), the radius of the
spherical polars is v (as opposed to R in_ARSQ),
and the radius of the cylindrical polars (Vx* + %)
is written r’ {as opposed to r in ARB0). Note that
depending whether the ascending wave is p or s,
the first factor in the potential is either 1/pa? or
1/pB% the second factor is either 1/€ or 1/m. These
two terms go hand in hand.

Each of these plane waves is then “weighted”
by the appropriate reflection coefficient {for poten-
tial amplitudes). This introduces a third factor
1“2 where A and B are appropriate combinations
of P and § in the notation of KS76. In the vicinity
of the surface, the absolute values in {10) take the
form (z -~ zg) (2 < 0) for the incident waves, and
the phase of reflected waves, now propagating
downwards, involve the term i wEz (for an emerg-
ing P wave). The potential for pP will therefore
be:

®rr - 4"‘”&2 ot . (11a)
TE
{ g» IPP Jo(wpr') exp ~iwk(z + zg) dp
0
and that for sP:
(DSP = - fmﬁz e—iwt . (Ilb)
e
f -% =P Jolopr') exp ~iw{éz + nzg) dp
0

Then, the integral over p is performed back, along
a convenient contour int the complex plane.

In general, because the reflection coefficients II
are not constant, one does not reconstruct a true
spherical wave (this would be the case however,
for the SH problem, for which I = 1 identically).
It can be shown that the leading coniributions to
the resulting integrals are obtained for the values
of the ray parameter p rendering the complex
phase in (11) stationary. These values of p are
simply the ray parameters of pP (or sP) in
geometrical optics. The amplitude of the
corresponding contribution can be evaluated by a
variety of methods, notably the saddle-point
approximation, which is most easily performed by
changing, in the Cagniard integral, from the vari-

able p 1o the phase
m'r=w[pr'+ﬁzs+‘g'z} {12)

or

w’r=m{p r'+~nz0+§z]

respectively for pP and sP. This results in an
additional {fourth) factor dpAl=. If the wave is not
converted upon reflection, dp/iv is simply propor-
tional to the variable £ (for pP; m for sS); if the
wave is converted, dp/dt does not have a simple
analytical expression as a function of the source
and receiver coordinates. However, at receiver
depths either small or large compared to that of
the source (z << or >> z; in (11)), one can neglect
the contribution of the descending (resp. ascend-
ing) ray to the travel time, and thus dp/+ becomes
proportional to £ (for pS close to the surface or sP
at great depths) or w (for sP close to the surface or
pS at great depths). A teleseismic wave
corresponds to very large receiver depths in
Lamb’s problem, so that dp/dt simply reflects the
emerging wave, the fourth factor being £ for pP
and sP; m for pS and s8S. In a sense, this factor
involving the recomposition of plane waves into a
(pseudo-) spherical wave, is the inverse of the
second factor (/€ or 1/m) stemming from
Sommerfeld’s integral. If the nature of the wave is
unchanged upon reflection (pP or s§5), the second
and fourth factors cancel out exactly; if a conver-
sion takes place (sP or p§), they don’t,

At this point, Cagniard-de Hoop's theory
shows that the potential of the emerging wave
“looks like” that of a spherical wave, appropriately
lagged in time, and modulated in amplitude by the
four factors listed above. This is only true for
times t close to the geometrical arrival time, and is
thus a high-frequency approximation, The final
step consists of going from potential to displace-
ments, keeping only the high-frequency terms, i.e.,
introducing a fifth factor /o or 1/B, depending
whether the emerging wave is P or §.

In conclusion, at a large distance from the
source and the reflection point, a reflected wave
such as sP can, for practical purposes, be com-
puted as if it were a spherical P wave, phase-
lagged according to the geometrical travel-time
along the ray, and with an amplitude controlled by
the five factors discussed above.

Table 1 gives the value of the five individual
factors in all 4 cases of depth phases (pP, sP, pS
and s85Y), as well as the overall amplitude, rela-
tive to the direct wave. These must be multiplied
by the appropriate radiation pattern coefficients
and time-lagged source time functions {e.g.,
R (w ~j;é) and X(t -1} for sP), and they
can then be combined with the direct wave (for
example RY(i; &) X(t - ) for direct P}, ltis easy
to verify that our results for pP and sP are
equivalent to K$76’s Equation (8), given that these
authors had considered a Poisson solid for which
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Table 1
Summary of Factors Contributing to the Generalized
Reflection Coefficients of Depth Phases

Phase pF P pS &8
Criginal Potential 1 1 5 L 3 1 >
4rpo 4rpf drpe 4mpp
Sommerfeld’s Expansion i L 1 1
3 gl g m
Reflection Coefficient PPy HES) TI75 (1) 158 ()
dp/dr at saddle point 3 £ e 7
Displacement from A L L L
potential o o B 8
Overall amplitude rela- | [PP(;y | 2 psp Gy <ot cosi. _E_ 1178 (7) Cosl | 55 G
tive to direct wave B cosf cosi

a/B = V3. The case of SH polarization (their
Equation (7)) is a trivial generalization of the last
column of Table 1, since in this geometry, II° is
identically equal to 1.

It is important {o stress that the reflection coef-
ficients used in Tabie 1 are for potentials. If coeffi-
cients for displacements (such as listed, for example
in ARSB0) are used, these formulse must be
adapted using the well known relations

PP =P
1155 =5

(@51
hd/

(13)

i
w!

HPS

oo wle W

this procedure amounting to combining the third
and fifth factors in Table 1

It is also important to realize that the above
computation takes care of the geometrical spread-
ing of the reflected phases: the conclusion of the
Cagniard calculation is that, in the whole half-
space, a reflected phase such as sP can be properly
computed as if it were a regular P wave, appropri-
ately time-lagged and weighted. Therefore the
structure of the emerging reflected phase is
correctly described by a P wave, modulated by the
appropriate amplitude coefficient, and there is no
need to compute a different geometrical spreading
coefficient: g (A) for P can be factored into all three
components (P, pP and sP}.

At this point it is worth commenting on the
occasionial assertion that “spherical and plane

waves have different reflection coefficients”. This
unfortunate language is a clear oversimplification
of the probiem Note in particular that a spherical
wave which is not converted (pP or 85} 15 reflected
with the plane wave coefficient [T'" or 15

A further note to check the results of Table 1

It is well known in normal mode theory that
the excitation of both spheroidal and torsional
modes goes to zero for a perfectly shallow source
in the pure dip-slip geometry (perfectly vertical
slip on a perfectly vertical fault plane). This resuit
inhibits the resolution of two components of the
moment tensor in the inversion of normal mode or
surface wave spectra (Kanamori and Given, 1981).
It is due to the fact that the relevant shear com-
ponent of the eigenstress of the mode must vanish
at the Earth’s surface, and it applies to fundamen-
tals and all overtones. A similar result should
hold for body waves, since they can be considered
a superposition of normal mode overtones. This is
easily verified, for example in the case of P waves:
in this particular geometry, the radiation patterns
of direct P, pP and sP are simply (Equations (A-
11) to (A-14) of KS76):

RP = = RPP = sing sin2i,
R = _ sind cos2j,

(14)

(we revert here to the fully indexed i ;j, notation).
When the source depth goes to zero, the time
delays vanish, and the amplitude of the resuiting
wave is simply:

o2 ¢

RP & RPP PP () + R 5P () — 5 (1")
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AR8Y's formulae (5.26-30) p. 140 can be used o
verify that this expression vanishes identically, for
all iy and j, satisfying Snell's law, and, of course,
for all azimuths ¢. Note that it is correct to use
K576's radiation pattern coefficients, and AR80's
reflection coefficients, since the orientation conven-
tion for the latter (AR80's Figure 5.5b p. 139) is
compatible with the Kanamori conventions (but
not with the AR80 source conventions). A similar
result is also obtained for the generalized SV
wave, composed of SV, pSV and sSV. In this
case, however, the ARS0 coefficients §5 and PS
must be flipped, since the orientation convention
of the reflected S wave is incompatible with K576,
The total amplitude of the generalized SV wave is
thus:

2

PR cosj .
RSszvﬁvP5<m>f%——4£-RﬁV-sscm) (16)
o COSIh
which, again, vanishes identically given
RS = RV - _sing cos2jy ; (17)

RPS = _sind sinZi),

The case of SH is trivial since in the dip-slip
geometry, RSH = - RSH ang §5 = 1 for §H polari-
zation,

In conclusion, the perfectly shallow pure dip-
slip geometry excites no seismic wave, body or
surface. This exercise verifies, in particular, that
the same geometrical spreading coefficient g(A)
can be factored into the three components of the P
wave. It also serves to illustrate the extreme care
which must be given to orentation conventions
when using excitation and/or reflection coefficienis,
even when obtained from different chapters of the
same book.

SURFACE RESPONSE AT THE RECEIVER

This well-known term describes the fact that
an incident seismic wave undergoes reflection and
conversion at the surface even as it is being
recorded, and that therefore seismic records will
render the full motion of the Earth, ie., the com-
bination of not only the incident wave, but also
the reflected and converted ones (Gutenberg, 1952;
Nuttli, 1961). This classical effect is easily com-
puted from the expression of the reflection coeffi-
cients of plane waves at a free boundary. In the
notation of ARBO (p. 140), the response of a verti-
cal seismometer fo an incident P wave of unit
amplitude will be

CPUg) = [1-PP(y) ] cosig+ PE (i) sinj, (18)

i ,
«Efzw (Ezm -2p?) cosig

4 p? COSiy COSJg

o B

1
E’E-w.?pz)z%»

while the response of a horizontal seismometer
polarized away from the source to an incident SV
wave of unit amplitude will similarly be

CHV (i =11+ 550 ] cosjg+ §P(jp) siniy
2 1

B2 B
1

(*g; -

(19

2p? ) cosg

4 p? cosig cosjy

2p2)2+ o B

The response of a transversely (SH) polarized
seismometer to an incident SH wave of unit ampli-
tude is always C5F = 2,

Finally, the horizontal motion of an incident P
wave is given by

4 . .
E‘g‘ COSTg COS]{)

Chiy = (20)

4 p? cosi, cosj
1 _ 2}72 )2 + P 0 Jo
p? op
and the vertical motion due to an incident SV
wave by:

4 , ,
. COsty COSJg

aBZ

CVig) =

21)
4 p® cosiy cosfy

o

“}m_zpz)z+

BZ

Note that these equations are identical to the
formulee proposed in Problem 5.6 of ARS0 (p.190),
given that these authors have oriented the vertical
axis downwards. Also, note that while (18) and
(19) may look rather similar, their behavior with
incidence is quite different since at large
incidences, the reflection of § becomes post-critical
for the converted SP wave, strongly affecting the
amplitude (and the phase) of C%. Their behavior
for a Poisson solid is given on Figure 4.

Equations (18-22) have many applications, not-
ably in allowing the correct interpretation of the
incidence angle of a P wave from a three-
component recording of its first motion. Similagly,
and as discussed by Nutili and Whitmore (1962),
an apparent SV /SH amplitude ratio must be
corrected to take into account C5Y (jo) before it can
yield any information regarding the combined
source-receiver geometry. Figure 4 shows that due

to the onset of critical reflection, SV /SH ratios
become very unreliable for incidence angles
jo = 30°. In particular, at the greater range of
incidences, the phase of C5V(jy) approaches w,
which means the polarity of SV appears fully
reversed.

Even though the above formalism appears
very straightforward, a major problem when
applying it in real life is that of defining an
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Fig. 4. Surface response coefficients C* (i) and C5(j o as a function of
the incidence angle and in the case of a Poisson solid, as
described by Equations (18) and (19). Top: Response of a vertical
seismometer to an incident P wave of unit amplitude. The solid
line represents C¥, the dashed one (cosiy) the contribution of the
incident P alone. Bottorm: Response of a horizontal seismometer
polarized away from the source, to an incident 5V wave of unit
amplitude. The solid curves show the amplitude (top frame) and
phase (bottom frame) of C5V. Note that due to critical S ~ P
reflection, this coefficient becomes complex around j; = 35°. C sV
is also compared to the surface response for SH waves
(identicaily equal to 2}, and to the contribution of the incident
wave alone (cosjy dashed line). This figure shows that the
apparent SH/SV ratio is strongly distorted beyond 30" of
incidence.
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appropriate incidence angle. When dealing with a
layered crust, the incidence angle can vary sharply
over the last few km of propagation, resulting in
what amounts to a frequency-dependent surface
response. For example, the analysis of the 3-
component motion of an incident P wave usually
yields a reasonable estimate of the azimuth of
arrival, but the incidence angle (which in principle
could give an estimate of the distance) remains
generally imprecise. In more general terms, the
response of a layered medium, such as a typical
crust-over-mantle structure, to an incident body
wave, has been studied in great detail by Haskell
{1960, 1962).

THE CASE OF DEEP SOURCES

The above algorithm was developed and used
extensively to compute synthetic seismograms
from sources located in the crust or in the shal-
lowest parts of the upper mantle (see for example
Stein and Wiens, 1986). In principle, it should be
possible to extend it to deeper sources. We discuss
below a number of problems which become
relevant for intermediate and/or deep sources.

1. In theory, it is no longer possible to neglect
the curvature of the Earth when computing
the amplitudes of pP and sP by the Cagniard-
de Hoop method (the assumption that P, pP
and sP share a common ray parameter
becomes inaccurate). In addition, precursors
to pP resulting, for example from underside
reflections at the Moho discontinuity, will be
present. In general, the contributions with the
largest amplitudes remain pP and sP, but their
time lags with respect to direct P will depart
from their expressions in the flat-layered prob-
lem. One way to handle this situation is to
carry out a so-called “Earth flattening transfor-
mation” (Chapman, 1973) before setting up
the Cagniard problem.

2. A further limitation involves the assumption
that the receiver is very much farther away
from the reflection point than the source. This
approximation helped us estimate dpAl in the
Cagniard integral in the case of converted
waves, and may break down at the shorter
range of epicentral distances. Note that both
of the above problems (1. and 2.) are sensitive
at distances close to the initiation of the depth
phases, and disappear at larger distances.

3. The attenuation operator has to be carefully
selected, and occasionally fine-tuned to the
particular path studied. Because most of the
attenuation in the Earth’s mantle takes place in
the low-velocity zone (Anderson and Hart,
1978), direct P or S rays leaving from a source
below the LVZ will be significantly less
attenuated. As discussed by Burdick (1978), ¢
values of 0.75 s for P waves and 2.5s for §

waves are adequate for sources deeper than
200 km. On the opposite, a reflected ray, such
as pP or 55 will be subject to an additional
episode of attenuation as it travels up through
the upper mantle. Different Q operators must
then be used for the three components of
Equation (1), and the convolutions performed
inside the bracket. The situation is made even
more complex by the strong lateral hetero-
geneity existing in the vicinity of all deep
seismic sources: an upgoing ray traveling
inside the cold slab, will be less attenuated
than the same phase to a different station,
which may travel through the hot mantle just
above the siab (Utsu, 1971). While this
strongly affects shori-period arrivals, it can
also influence the relative amplitudes of long-
period P, pP and sP.

4. Other phases can arrive between P and pP,
such as PcP, or between pP and sP, such as
pPcP or PP. These phases have to be com-
puted independently if the whole seismogram
is tc be modeled.
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