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CREEP DEFORMATION
OF ICE

Johannes Weertman
Department of Materials Science and Engineering and
Department of Geological Sciences, Northwestern University,
Evanston, Illinois 60201

INTRODUCTION

Knowledge of the creep properties of ice often is needed in field and
theoretical studies of the flow and deformation of glaciers, ice shelves, and
ice sheets. Recently many of the icy moons in the solar system have become
much better known as a result of the successful deep-space probe missions.
An understanding of the physical processes that take place within them
requires information about the plastic deformation behavior of ice. Unlike
ice within glaciers and ice sheets, the crystal structure of ice deep within an
icy satellite may be one of the high-pressure polymorphs rather than that of
the more familiar hexagonal ice Ih. At the present time,’there exists a great
deal of creep data on ordinary ice Ih but very little on other forms of ice.

The aim of this article is to present our basic knowledge on the creep
properties of ice. This includes information derived from laboratory
experiments as well as gleaned from field measurements made on glaciers,
ice sheets, and ice shelves. No attempt is made here to review in a complete
manner all the literature on this subject. However, new results from recent
papers on ice creep that are not covered in earlier and more complete
reviews are included. The reader is referred to the reviews of Hooke (1981 
called review H hereafter), Paterson (1977; called review P), Glen (1974,
1975 ; called review G), and Weertman (1973 ; called review W) for a more
complete coverage of the earlier literature. Review H compares experi-
mental results on ice creep with field measurements on glaciers and other
large bodies of ice. Review P summarizes closure data on boreholes in the
Antarctic and Greenland ice sheets and Canadian ice caps. Review G
covers most aspects of the mechanics and physics of ice. A tutorial-type
review on polycrystalline ice has been given by Mellor (1980; called review
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216 WEERTMAN

M). Hooke et al (1980) have reviewed the research that still needs to 
carried out on the mechanical properties of ice, rather than what has been
accomplished up to now. The book by Hobbs (1974) on the physics of ice
also covers ice creep. Ice flow law determinations made from measurements
of the increase with time of the tilt of vertical boreholes in glaciers are
summarized by Raymond (1980) and by Paterson (1981). Goodman et 
(1981) have reviewed creep data and creep mechanisms of ice for the
purpose of making creep diagrams (deformation maps).

Theoretical explanations of the creep process are given in this article, but
in only limited detail. Obviously, the degree of risk involved in extrapo-
lating creep results outside the stress-strain-temperature-time region in
which measurements actually were made is a function of how well the
creep processes are understood.

Unless otherwise stated, the word "ice" in this review means ordinary ice
Ih that exists under ambient pressures and whose hexagonal crystalline
structure gives rise to the classic form of snowflakes. The hexagonal crystal
form is also the origin of the large anisotropy of the creep properties of ice.
Slip occurs readily across the basal planes (normal to the crystal c-axis) 
an ice crystal. If stress of magnitude sufficient to produce plastic defor-
mation is applied to an ice single crystal, the ice crystal is "softer" if the
applied stress has a shear component resolved across the basal planes that
is relatively large. If the resolved basal shear stress is relatively small, the ice
crystal is "harder" and the amount of plastic deformation in a given time
period is smaller. In the former situation the ice crystal is in an "easy" glide
orientation in which lattice dislocations are moved easily across the basal
slip planes to produce slip. In the latter situation the ice crystal is in a "hard"
glide orientation because deformation requires slip on nonbasal planes.
The deformation of the grains of polycrystalline ice generally requires a
hard-glide component and thus polycrystalline ice usually is "hard" too.

Our review is restricted to the creep properties of ice of grain size
sufficiently large (> 0.5 mm) that deformation occurs primarily by dislo-
cation motion. Only the creep observed at moderate to large strains (greater
than, say, 0.1~o) is considered. Excluded are small-strain anelastic defor-
mation and creep produced by the mechanisms of the creep of very fine
grain material.

TIME DEPENDENCE OF CREEP STRAIN FOR

CONSTANT STRESS TESTS

Two types of curves of creep strain e versus time t are found for ice
specimens made to creep by application of a constant stress. These are
shown in Figure 1. Both polycrystalline ice and ice single crystals in a hard
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CREEP DEFORMATION OF ICE 217

orientation usually exhibit a creep rate ~ -= de/dt, which decelerates as the
creep strain increases (see reviews G and W). At larger creep strains
the creep rate approaches a constant, or quasi-constant, steady-state value.
The creep rate of ice single crystals that are in an easy-glide orientation
usually accelerates toward the steady-state creep rate that exists at the
larger plastic strains (see reviews G and W).

The two types of creep curves shown in Figure 1 also describe the creep
behavior of other crystalline material. Germanium and silicon (Alexander
& Haasen 1968), as well as some alloys that are called class I alloys by
Sherby & Burke (1967) and class A (Alloy type) by Yavari et al (1981), 
creep curves that accelerate into the steady-state region. (Class I/A alloys
have a power-law creep exponent n with a value n ~- 3.) The creep curves of
pure metals and alloys called class II by Sherby & Burke [pure metal and
class II alloys are called class M (Metal type) by Yavari et all always follow
a decelerating approach of the creep rate into steady state. But some class
I/A alloys also show this latter behavior. (Class II/M metals and alloys have
a power-law exponent ofn -~ 4 to 5.) In the case of rocks and rock minerals,
our knowledge of the behavior in the transient-creep region is somewhat
uncertain because of the experimental difficulties in applying pure hydro-
static pressure in a test run to prevent microcracking of a specimen. Data
reviewed by Carter & Kirby (1978) showed decelerating transient creep.

~
645 kPa ,~450
Single Xtal

/

Sin kPe0.14 gle Xtal

~ 0.10

(:1. Polycrystal line
~ 0.08

0.001

0.04

0 10 2’0 5~ 40

0 ~ hours
0 I 2 3 4 5

TIME hours

Figure I Creep strain versus time under constant stress for polycrystalline ice at - 7°C (after

Duval & Le Gac 1980) and easy-glide single crystals at -~ - 10.5°C (after Ramseier 1972).
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218 W~ERT~nn

However, studies on olivine (Durham et al 1977, 1979), which has n -~ 
indicate that the transient creep could be of the accelerating type.

Ice is somewhat unusual in that both accelerating and decelerating
transient creep are found for it. But metal alloys that are on a borderline
between class I/A and class II/M behavior also exhibit both types of
transient-creep behavior (Oikawa et al 1977). [In the alloys examined 
Oikawa et al, as well as those looked at by Yavari et al (1981), a change from
n -~ 3 to 5 could be accomplished by altering the magnitude of the applied
stress. Vagarali & Langdon (1982 and private communication) have shown
even more clearly for a hcp Mg-A1 alloy the switch from accelerating to
decelerating transient creep, the increase of n from 3 to 4, and the existence
(or nonexistence) of the upper yield point with increase of stress.]

There is a simple qualitative explanation for the creep curves of Figure 1.
Material in which creep starts out with an accelerating rate presumably are
those in which the initial dislocation density is small and in which
dislocation glide motion is hindered by any number of drag mechanisms.
Dislocation multiplication, which requires dislocation motion, is also
hindered. The creep rate is given by the equation

~ = ~pbv, (1)

where v is the average dislocation velocity, b is the length of the burgers
vector, p is the dislocation density, and ~ is a dimensionless geometric factor
whose exact value, usually of order of magnitude one, depends upon the
orientation of the slip planes. For drag mechanisms the dislocation velocity,
until some critical stress level is exceeded, is given by

v = vo(ab3/kT) exp (-Q/kT), (2)

where Vo is a constant of dimension of velocity, a is the stress, k is
Boltzmann’s constant, T is the temperature, and Q is the activation energy
of the drag mechanism. As the dislocations move, more and more
dislocations are created. The dislocation density increases up to the steady-
state density given by

fl = flff2/b2#2, (3)

where fl is a dimensionless constant whose experimentally determined
value (Weertman 1975) is of order 1, and # is the shear modulus. [At the
density given by (3), the internal stress produced by the dislocations is of the
same magnitude as the applied stress.] Combining (1), (2), and (3) gives 
the steady-state power-law creep rate

~ = ~o(a/l~)"(~ba/kT) exp (--Q/kT), (4)

where n = 3 and g0 = aflvo/b- This equation is that of a class I/A alloy.
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CREEP DEFORMATION OF ICE 219

An explanation of the decelerating creep rate seen in class II/M material
is that the dislocations experience a smaller resistive drag to their glide
motion compared with that of their climb motion. Thus when a stress is
applied, dislocations multiply almost instantaneously to give a density of
the order of (3). A large amount of glide motion occurs and produces 
instantaneous plastic strain. Because the dislocation morphology that
exists after the "instantaneous" plastic deformation presumably is not the
most stable dislocation arrangement possible, the dislocations start to
rearrange themselves into a more stable pattern. The creep rate slows down
until steady-state creep is attained. The creep rate presumably is controlled
by dislocation climb, which in turn is controlled by self-diffusion. At high
stresses and/or lower temperatures and moderate stresses, it is likely to be
controlled by dislocation pipe self-diffUsion.

One difficulty remains to be resolved for this simple picture of climb-
controlled creep for class II/M material : If no ad hoc assumptions are made
in the dislocation models used to calculate the creep rate, the power-law
exponent is equal to n = 3 (Weertman 1975) when climb is controlled 
bulk diffusion, rather than the experimentally observed n = 4 to 5. [-When
pipe diffusion, i.e. diffusion down dislocation cores, controls the climb, the
value of n is increased by 2 to n = 5 (Robinson & Sherby 1969, Evans 
Knowles 1977, Langdon 1978, Langdon & Mohamed 1978, Sherby &
Weertman 1979, Spingarn et al 1979). However, experimentally n -~ 6 to 
in this situation.] An experimental determination that n = 3 is, therefore,
no guarantee that a dislocation drag mechanism controls the creep rate. But
a value of n = 3, coupled with the observation that the creep rate
accelerates during the transient period, should give strong support that
such a mechanism does control the creep rate. Because the steady-state
creep of ice single crystals in an easy-glide orientation has an exponent
-~2-3.9 (see Table 1), and because of results found on the motion of indi-
vidual dislocations that are considered later, it appears likely that a dislo-
cation drag process does control the creep of these crystals.

The implication of this explanation of accelerating creep is that if the
strength of the drag process could be reduced sufficiently the transient
behavior of easy-glide crystals should change from accelerating to de-
celerating behavior. Doping ice crystals does increase the dislocation
velocity and decrease the drag force (Mai et al 1978). Riley et al (1978) 
made the interesting observation that NaCl-doped easy-glide single
crystals have a decelerating transient creep. (They did not determine the
value of n because the steady-state creep region was not reached in their
experiments.)

The value of n for polycrystalline ice and ice single crystals of hard
orientation also is approximately equal to three (see Table 1). The rate-
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220 WEERTMAN

Table 1 Power law exponent n and creep activation energy Q

a
n (kJ mole- 1) Comment Reference

Polycrystalline Ice below - 10°C
3.1 59.9 --
3 59.9 Frazil ice
2.5 59.9 Columnar ice
3.1 77.9 --

3.1-3.6 83.8 --

3.5
3.2
3.5

2.9-3.05
3

50.3 Friction exp.
41.9 --
41.9 D20 ice
44.8 --
68.7 --
64.9 Columnar ice
67 Columnar ice
-- Creep rate of floating

ice shelves
54 Secondary creep rate

determined from closure
rates in boreholes

3 = 74 Our estimate of Q from
their data

-- 78 Antarctic ice

Polyerystalline Ice above - 10°C
3.2 134

2.8-3.2 134

3.2 122
-- -~ 168

3 -- Glacier tunnel closing
3 ~- 200 Our estimate of Q from

their data
3 -- Triaxial stress tests

Single crystals in easy glide
-- --

1.5-3.9 -- --
1.6 66.2 Bend test
-- 65.4 - 50°C to - 10°C
-- 39.8 - 90°C to - 5o°c
4 -- -- 50°C

Ramseier (1972)
Ramseier (1972)
Ramseier (1972)
Barnes et al (1971)
Steinemann (1958) with

reanalysis by Barnes
et al (1971)

Bowden & Tabor (1964)
Bender et al (1961)
Bender et al (1961)
Mell0r & Smith (1967)
Mellor & Testa (1969a)
Gold (1973)
Sinha (1978, 1982)
Thomas (1971)

Paterson (1977)

Russell-Head & Budd (1979)

Duval & Le Gac (1982)

Glen (1955)
Steinemann (1958) with

reanalysis by Barnes
et al (1971)

Barnes et al (1971)
Mellor & Testa (1969a)

with review W analysis
Nye (1953)
Russell-Head & Budd (1979)

Duval (1976)

Butkovitch & Landauer
(1958, 1959)

Glen (1952)
Steinemann (1954)
Higashi et al (1965)
Jones & Glen (1968)
Jones & Glen (1968)
Glen & Jones (1967)
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CREEP DEFORMATION OF ICE 221

Table 1 (continued)

Q
n (kJ mole- 1) Comment Reference

59.9

1.9 78
2.9 75

2 70
1.8-2.6 81

Sinole crystals in hard 9lide
3 --

-- 57.0
-- 69.1

- 20°C to - 0.2°C
No activation energy

change, value not stated
- 30°C to - 4°C
Bicrystals

-30°C to -4°C
- 20°C to - 0.2°C
-- 5°C to -- 7°C

Ramseier (1972)
Gold (1977)

Homer & Glen (1978)
Homer & Glen (1978)

Jones & Brunet (1978)
Nakamura (1978)

Butkovitch & Landauer
(1958, 1959)

Ramseier (1967a,b)
Mellor & Testa (1969a)

controlling process for this material is not certain. The fact that n ~- 3 lends
support to a drag mechanism but, as already mentioned, this value does not
necessarily rule out a dislocation climb control mechanism.

CONSTANT STRAIN RATE TESTS

If ice is deformed at a constant strain rate (rather than under a constant
stress) a curve of stress versus strain (rather than strain versus time) 
obtained. Figure 2 shows the type of stress-strain curve that is found for
single crystals of ice in an easy-glide orientation and in some tests on
polycrystalline ice (reviews G and W). As the strain is increased, the stress
reaches a maximum, "upper yield point" value, falls off, and finally reaches a
steady-state value. In the case of ice crystals of hard orientation and in other
polycrystalline ice tests, the stress-strain curve obtained in a constant strain
rate test is different (reviews G and M, Higashi 1967, Hawkes & Mellor
1972, Shoji 1978). The curve is essentially the same as a metal tested at
constant strain rate at a high temperature. The stress increases with strain
and reaches a quasi-saturation, quasi-steady-state level. (A slight decrease
in stress in high strain rate tests, which seems to be produced by cracking,
may occur at large strains.) It should be noted that once the stress reaches 
steady-state value the constant strain rate test is the equivalent of a constant
stress test when the creep rate has attained a steady-state value (Mellor 
Cole 1982).
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222 WEERTMAN

A stress-strain curve of the type shown in Figure 2 is readily explained
(see reviews G and W and the literature quoted there) if dislocation motion,
and thus creep, is controlled by a drag mechanism. In the initial stage of a
test there are only a few dislocations present. The strain is almost all elastic.
The stress must increase as the elastic strain is increased when the total
strain rate is held constant. As the stress increases, the dislocations that are
present move faster, multiply more rapidly, and add a greater plastic
component to the total strain. Eventually enough dislocations exist that all
of the strain rate can be produced by their movement at a smaller average
velocity and at a lower stress. Hence the stress falls offto a much lower level.

The shapes of the curves of easy glide for the ice single crystals of Figures
1 and 2 thus can both be explained qualitatively if drag controls the glide
motion of dislocations and ,the creep rate. Similarly, for the case of hard-
glide crystals and some polycrystalline ice the fact that the creep curves
show deceleration and the stress-strain curve shows no marked upper yield
point might imply that dislocation climb, rather than drag, controls the
creep rate. If so, it is puzzling why it is so much more difficult to make ice slip
on nonbasal planes. We leave this as an exercise for the reader to solve; a
second part of the exercise is given when borehole closure results are
considered. A partial answer is given later.

Stress-strain curves have also been obtained on columnar ice under
application of a stress that increases at a constant stress rate (Sinha 1982).
No upper yield point is observed. The stress increases monotonically with

6

~4

5.5 s-I

1.2 x’lO"’~ s-~ 16 \

8

0 0.01 0.02 0.03 0.04 0.05

STRAIN

Figure 2 Stress versus strain at constant strain rate for polycrystalline ice at 11°C (after

Jones 1982) and easy-glide ice single crystals at - 10°C (after Ramseier 1972).
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CREEP DEFORMATION OF ICE 223

increasing strain but with a decreasing work-hardening coefficient (defined
to be the slope da/de of the stress-strain curve). Cracking within the ice
makes the results at later stages ambiguous.

STRESS DEPENDENCE OF STEADY-STATE
CREEP RATE

At moderate stresses, as the reader must have deduced from the discussion
of a previous section, the steady-state creep rate of ice is given by the power-
law creep equation

~ = B~rn exp (-Q/kT). (5)

Here B is a constant. In the glaciological literature this equation is known as
Glen’s creep law for ice because he showed first that it describes the creep of
ice (Glen 1955).

In Table 1 are listed measured values of the power exponent n and the
creep activation energy Q obtained from both laboratory experiments and
field measurements. Figure 3 is a log-log plot of stress and creep rate for
some of these data.

It should be noted in Table 1 and Figure 3 that the power exponent
determined in most tests is approximately equal to 3. Also note that the
activation energy for creep of single crystals up to the melting temperature
(and above -50°C) is approximately 60 kJ mole-1. This value is, within
experimental error, the same as that found for the self-diffusion of hydrogen
and of oxygen in ice (see reviews G and W). Hydrogen and oxygen diffuse 
identical rates in ice. The equality of the creep and diffusion activation
energies caianot be used as proof that the rate-controlling process is
dislocation climb (which in turn is controlled by self-diffusion) because drag
mechanisms can also involve the motion of hydrogen in the lattice.

Polycrystalline ice has the same activation energy as single crystal ice at
temperatures below - 10°C, but it has a value somewhat greater than twice
this value at temperatures above-10°C. The larger activation energy of
polycrystalline ice at the warmer temperatures generally is attributed to the
softening that is produced by the significant amounts of recrystallization
and grain growth that occur simultaneously with the creep deformation.
The experiment of Jones & Brunet (1978) on single crystals was done for the
express purpose of asc.ertaining whether there was a true change in
activation energy in the dislocation deformation process. The activation
energy was observed not to change. The ratio ~_1oc/~_1ooc for poly-
crystalline ice is 7.6. For single crystal ice the same ratio is 2.9. Thus
although the change in activation energy of polycrystalline ice is quite large,
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224 WEERTMAN

the maximum increase in the creep rate it produces is relatively small when
it is considered that Q enters the creep rate in an exponential term.

It should also be noted in Figure 3 that the creep rate at a given stress is
much larger for easy-glide crystals than it is for hard-glide crystals and for
polycrystalline ice. The difference is a factor of about 500.

At large stress levels the data of Barnes et al (1971) show that the power

10-4

Ice

R-HB--,= /
/

/ t t ~
O.Oi ~ 0.1 I I0 $0

STRESS MPo
Figure .3 Log-log plot of steady-state or the minimum creep rate versus stress. Creep rate is
normalized to -10°C, withQ = 134kJmole 1 for polycrystalline ice above -10°Cand60kJ
mole- l below this temperature or the activation energy reported by experimenter. Creep rate
and stress are for, or have been changed to, the equivalent of a uniaxial tension or compression
test. Data from the following sources. BL: Butkovitch & Landauer (1958,1959); BTW : Barnes
et al (1971); Glen : Glen (1955); St : Steinemann (1954); R: Ramseier (1972); Si : Sinha 
R-HB: Russell-Head & Budd (1979); ice shelf: Thomas (1971); glacier tunnel closing (Vesl-
skautbre in Norway and Z’Mutt in Switzerland): Nye (1953); ice fall tunnel closing
(Austerdalsbre in Norway): Glen (1956); borehole closing (Byrd in Antarctica, Site 
Greenland, and Meighen and Devon in Canada): Paterson (1977).
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CREEP DEFORMATION OF ICE 225

law breaks down, in agreement with observations on other crystalline
material. Over a stress range that includes large stresses, creep data,
including those of ice, follow the more general power sinh equation of
Garofalo: ~. _~ [sinh (a/a*)] n, where or* is a constant. The sinh function
reduces to its argument when its argument is small, and thus when a < a*
the Garofalo equation reduces to the power-law equation.

Creep data on ice obtained at very low stresses and creep rates, which are
not plotted in Figure 3 or tabulated in Table 1, generally indicate that the
creep rate is proportional to stress (Mellor & Testa 1969b). The creep rates
at a given stress level show scatter between different investigators. Because
the creep strains are so small, these data should not be compared with those
of Figure 3, which are obtained at much larger strains. In fact, the data of
Russell-Head &Budd (1979) shown in Figure 3 obey a third-power
relationship, whereas small-strain experiments in the lower part of the same
stress region give a power closer to one. The Russell-Head & Budd work is
remarkable in that they carried out experimental runs up to two years in
time in order to obtain larger strains. [A linear relationship at low stresses
and small strain can be accounted for with a grain boundary sliding
mechanism, the Nabarro-Herring or Coble mechanism of mass diffusion of
point defects between grain boundaries, and a dislocation mechanism using
(1) and (2) if there is no significant change in the dislocation density 
and after application of the stress.]

Field Data

In Figure 3 are plotted data obtained from field measurements of the
deformation of floating ice shelves, and from the closure of tunnels
excavated in glaciers and boreholes drilled in ice sheets and ice caps. An
unconfined floating ice shelf deforms in a very simple manner. It thins under
its weight in a manner that is exactly equivalent to that of a laboratory sheet
specimen that is pulled in two orthogonal directions in biaxial tension. [If
the ice shelf is unconstrained in both horizontal directions, the two stresses
of the biaxial test are equal to each other. If the ice shelf can spread in only
one direction, the two biaxial stresses are not equal to each other. One has a
deviatoric value (see a later section) equal to zero.]

The theory for the spreading of ice shelves is particularly simple. Thomas
(1971) has used this theory, part of which he has helped develop, to analyze
spreading-rate measurements reported from different ice shelves. In Figure
3 is plotted the creep rate stress relationship for ice, which is deduced from
his calculations. It agrees reasonably well with the slower laboratory creep
data.

Tunnel-closing data have been analyzed by Nye (1953), who developed
the theory for tunnel closing. These data also are plotted in Figure 3, and
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226 WEERTMAN

agree with Thomas’ results and the slower laboratory data. The Nye theory
for tunnel closing applies equally well to the closure rate of boreholes drilled
into ice. In Figure 3, borehole data from different sources, analyzed by
Paterson (1977) using Nye’s theory, lie considerably below all the other
data. The only difference between the tunnels and the boreholes is that the
tunnels were in ice near the melting point and the boreholes were in cold ice.
A man or woman could enter the tunnels but a borehole could only
accommodate one of their arms or legs. However, the closure curves of the
boreholes exhibit a curious behavior. The closure, converted into a true
creep rate, generally took place at an increasing rate, although a minimum
rate occurred shortly after the start of closure. In other words, the
polycrystalline ice around the borehole has a creep curve somewhat like
that of Figure 1 for easy-glide ice single crystals. The creep rate plotted in
Figure 3 for the borehole data is the minimum creep rate. The creep rate
increased by factors of 3 to 10 during the course of closure. Hence the
steady-state creep rate for the ice around boreholes should lie much closer
to the tunnel-closing data and the ice shelf data. Why this polycrystalline ice
from the Arctic and the Antarctic shows this acceleration is the second part
of the exercise mentioned earlier.

Field data on the change with time of the vertical tilt of boreholes in
glaciers, ice sheets, and ice caps also give information from which the creep
properties of ice can be deduced. The creep within a glacier is primarily a
shear deformation that increases from the upper surface to the lower
surface. Thus a vertical borehole in time is tilted. The amount of tilt
increases with depth. Extracting the ice creep properties from these data is
made difficult partly because of multi-stress component effects on the creep
rate. (These effects are discussed in a later section. The ice fall tunnel line in
Figure 3 is an example of such an effect.) The uncertainty in the estimates of
the shear-stress magnitude at different depths below the surface is also a
problem.

Creep rate data determined from boreholes in glaciers [-summarized by
Raymond (1980) and by Paterson (1981)] have not been included in Figure
3. However, Table 2 lists values of the stress exponent n and values of the
creep rate at 0.1 MPa (creep rate and stress appropriate for uniaxial tension
or compression tests) for data reanalyzed by Raymond (1980). The creep
rate is normalized again to -10°C with use of the activation energy
Q = 134 kJ mole- 1. The ice of tl~e glaciers is close to the melting point.
Also listed in Table 2, for comparison purposes, is the average creep rate at
0.1 MPa of the ice shelf, glacier tunnel closing, Russell-Head & Budd,
and Barnes et al data of Figure 3. It can be seen that the exponent value
given by the tilt results is approximately three. The absolute values of the
creep rates are approximately the same as the smaller creep rate lines of
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CREEP DEFORMATION OF ICE 227

Table 2 Creep data for borehole tilt measurements after reanalysis by Raymond (1980)a

Glacier n (s-~ x 10~°) Source

Salmon (British Columbia, 2.8 1.3 Mathews (1959)
Canada)

Athabasca (Alberta, 4 0.9 Paterson & Savage (1963)
Canada)

Athabasca 3.6 0.9 Raymond (1973)
Blue (Washington, 3.3 0.9 Shreve & Sharp (1970)

USA)
Figure 3 data (slower 3 1 --

creep rate data)

"Creep rate normalized to -10°C, with Q = 134 kJ mole-1. Creep rate is for the equivalent of a
longitudinal strain rate under a uniaxial compressive or tensile stress of 0.1 MPa.

Figure 3. These lower creep rates probably are the best ones to use in
theoretical calculations of the flow of glaciers and ice sheets. Goodman et al
(1981) have used a creep diagram and the Byrd borehole data to success-
fully account for the horizontal ice movement measured at Byrd station,
Antarctica.

Complications

The steady-state creep of ice actually is a bit more complicated and not as
neat and tidy as has been indicated so far. Curves of creep rate versus creep
strain at constant stress in the so-called steady-state region generally show
a minimum in the creep rate, which is followed by somewhat higher strain
rates at larger strains (review M, Mellor & Cole 1982). Budd (unpublished
data) and Mellor (review M) have pointed out that the minimum creep
strain under a fixed stress is reached at longer times, but at the same strain,
as the test temperature is lowered. They also point out that some apparent
conflicts in reported experimental and field results may simply be a
consequence of not taking the position of the minimum creep rate into
account. That is, one experiment may have been carried out on one side of
the minimum and another on the other side. Steady-state creep rates should
be regarded as quasi-steady-state creep rates. Figure 4 illustrates one rather
extreme example of a large increase in creep rate of polycrystalline ice that
follows the minimum creep rate. This increase is apparently produced by
the development of a fabric, with the ice crystals becoming more favorably
oriented for creep. The lower curve exhibits irregularities in the strain rate
of another sample that is produced by simultaneous recrystallization. The
increase in the activation energy of polycrystalline ice, which is produced
presumably by recrystallization, has already been mentioned. Detailed
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228 WEERTMAN

studies of the development under stress of crystal orientation fabrics have
been carried out by Kamb (1972), Budd (1972), and Wilson & Russell-Head
(1982).

Because ice crystal orientation fabrics develop within ice sheets at
different depths, the creep properties of ice in large ice masses can be a
strong function of the creep flow itself. Russell-Head & Budd (1979) have
analyzed the shear in creep from borehole tilt measurements in the Law
Dome, Antarctica. They find that the shear-strain rates are anomalously
large because of fabric development. At intermediate depths, a higher
fraction of the ice has its c-axis oriented near a vertical direction. Analysis of
the ice fabrics of the Camp Century and Dye 3, Greenland, borehole ice
(Herron 1982, Herron et a11982) and the Byrd Station, Antarctica, borehole
ice by Gow & Williamson (1976) reveals a strong increase with depth of the
fraction of ice with a near-vertical c-axis.

Creep experiments carried out by Shoji & Langway (1982) on the
strongly oriented polycrystalline ice (Herron et al 1982) obtained from the
Dye 3 borehole close to the bottom of the 2000-m core, as well as ice from

0
0 2

T I ME weeks
Figure 4 Strain rate versus time for polycrystalline ice at - 1 °C under constant stress that is
undergoing recrystallization and fabric development (after Duval 1981).
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CREEP DEFORMATION OF ICE 229

the Barnes Ice Cap margin (Baker 1981), gave creep rates that are a factor 
four larger than those of the ice shelf, glacier tunnel, R-HB, and BTW lines
in Figure 3 of randomly oriented polycrystalline ice. The experiments were
carried out in a field laboratory immediately after the ice was brought up
from the borehole. The same factor of four enhancement was found by
Russell-Head & Budd (1979) in the creep rate of the strongly oriented ice
that occurs at intermediate depths in the Law Dome boreholes. Russell-
Head & Budd determined the creep rates from borehole tilt measurements
as well as from laboratory experiments. It appears reasonable from these
results to use an enhancement factor of four in ice-modeling work wherever
strongly oriented ice is expected or is known to occur.

An implicit assumption in the plots of Figure 3 for polycrystalline ice is
that there is no significant grain size effect on the creep rate. For large grain
material a grain size effect is not expected. However, the experimental

4

"7

o.B

,,, 0.6

o 0.4

0.2

0.1

/

/
\ /"
¯ /

/
o/

\ 
\/

o

~ o

i i i i ~ I I I I I 1 i i
0,6 0.8 I 2 4 6 8 I0

GRAIN SIZE mm
Figure 5 Creep rate versus grain size. ̄  : data of Baker (1978) for -- 7.1 °C to - 7.2°C at stress
of 560 kPa; O, [] : data of Dural & Le Gac (1980) for - 7.0°C to - 7.2°C at stress of about 500
kPa. The open squares are for Antarctic ice.
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230 WEERTMAN

evidence on grain size effect is sparse and somewhat in conflict. Baker (1978,
1981) reported that there is a strong grain size dependence for grain sizes
between about 0.6 mm to 6 mm. His data, some of which are plotted in
Figure 5, show that the creep rate goes through a minimum at a grain size
near 1 mm. However, Duval & Le Gac (1980) failed to find a grain size
dependence for steady-state creep in their tests on specimens of grain sizes
between about 1 mm and 10 mm, although a weak dependence was found
for transient creep.

Anomalously large creep rates (up to almost an order of magnitude
larger) have been measured in experiments carried out on polycrystalline
ice whose temperature is extremely close to the melting temperature (within
0.01°C) (Barnes et al 1971, review H, Duval 1977, Budd, unpublished data).
Duval (1977) looked at this problem by measuring the creep rate of ice that
is close to its melting temperature as a function of the water content of a
sample. He found that the creep rate tripled when the water content
increased from 0.01~o to 0.8~. The variation of creep rate with water
content was approximately linear. Duval attributed his results to the fact
that samples with different water contents had different salt contents and
different melting temperatures. Impurity-doped ice is known to creep
appreciably faster than pure ice (reviews G and W).

CREEP UNDER MULTI-COMPONENT STRESS

In glaciers, ice sheets, and ice shelves, and around boreholes and tunnels
excavated in them, the stress state is almost always a multi-component
stress state. Thus in any complete formulation of ice flow in these ice bodies
a more general form of the creep equation than the one-component stress
equation (4) is needed.

Suppose acting on isotropic, polycrystalline ice there are more than one
stress components 0-ij that have nonnull values. More than one of the tensor
strain rate components glj in steady-state creep will have nonnull values too,
except for the case of pure hydrostatic pressure. Nye (1953) obtained for 
incompressible solid a generalized creep equation for multi-stress by using
the analogue of plastic!ty theory’s L6vy-von Mises relations. Since the
material is considered to be isotropic, the creep equation can be a function
of the three stress invariants. The first stress invariant is the hydrostatic
pressure P given by

P = - (0-11 + 0"22 ~- 0"3 3)/3 ---- -- 0"u/3. (6)

The effect of P is taken into account in (5) by rewriting this equation 

i = Ba" exp (--Q/kT) exp (-VP/kT), (7)
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CREEP DEFORMATION OF ICE 231

where V is the activation volume for creep, a quantity that can be
determined experimentally.

Since creep does not take place under pure hydrostatic pressure in fully
dense material, it is convenient in the above equations to use the deviatoric

stress components t~’zj defined by

cr’ij = % + cSi~P, (8)

where cSgj = 0 for i # j and cSgj = 1 for i = j. (Note that a~ = 0 for pure
hydrostatic pressure.)

The second stress invariant z can be defined by

2~ ~ = ~, (9)

where the right-hand side is summed over all the deviatoric stress
components. (When i # j, a~s and a~i are each counted.) The analog of the
L6vy-von Mises relations requires for any two stress components and the
corresponding strain rate components that

wh~r~ ~ ~ ~ ~or strain rat~ components. [Th~ ¢ffectiv~ strain rate ~ff
= (~fj~ij/2) ~12 is also invariant. For an incompressible solid in plastic
deformation, ~ ~ + ~22 + ~aa = 0.]

Suppose in a uniaxial tension or compression test the relationship
between longitudinal creep rate ~ and the tensile or compressive stress is
given by a general equation

= f(-), 1)
where f(~) is an arbitrary function. Power-law creep is one special case.
[If pressure P # 0, its effect is taken into account through the expression
exp (-PV/kT) in th~ function f.] Equations (10) and (11) ar~ satisfied 

= 02)

(Note that ~ = ~z for the uniaxial stress situation. If a~ ~ is the tensile
stress ~, then ~ = 2,~/3, *~2 = ~3 = -ett/3. Also, ~ = ~ = -2~22
= --2~aa.) Equation (12) reduces to (11) %r uniaxial tensile creep, and 
transverse strain rate components have their correct values, too. Thus (12) 
a reasonable generalization for creep under multi-component stress for
isotropic material, and has bccn used cxtcnsivcly in analyses of glacier flow
problems. For power-law creep the function f is

f(~) = B ¢xp (-~lkT) (-PVIkT)e~. (13)

The third stress invariant, which is ~a~)ua~/3, has been considered for
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232 WEERTMAN

equations of multi-component creep (Glen 1958). It has not been clearly
demonstrated that it is necessary to include this invariant in the creep
equation for isotropic polycrystalline ice (see review G). Creep experiments
of Duval (1976) for polycrystalline ice under triaxial stress conditions
strongly support Nye’s use of the second stress invariant. However, the
third stress invariant appears to be needed to account for the creep
properties of anisotropic polycrystalline ice (Budd, private conversation,
Lile 1978).

Nye (1953) used the above equations to calculate the expected closure
rate s (s = radial wall velocity divided by wall radius) of round tunnels and
boreholes in ice bodies. For the case of power-law creep with n = 3, Nye’s
results reduce to

s = B exp (-Q/kT) exp (-PV/kT)Pa/6, (14)

where P is the overburden pressure. The value ofz given by (9) is z = P/3.

Since a = v/~z in a uniaxial stress, it is necessary in comparing uniaxial

creep date with closure data to set ~r = -P/x/~ and g = -2s/x//-~. This is
done in Figure 3.

A very striking example of the effect that one stress component has on the
strain rate of a different component is the closure rate, measured by Glen
(1956), of a tunnel created in an ice fall in one of the Norwegian glaciers.
When a tunnel is dug into an ordinary glacier to depths in which the
dominant stress is primarily the hydrostatic pressure P (equal to the ice
overburden), the closure rate according to the theory of Nye (1953) is equal
to CP", where n is the power-law exponent and C is a constant. However,
large stress components other than hydrostatic pressure exist in an ice fall.
Glen estimated that a compressive stress 6 of the order of 300 kPa existed in
the vicinity of his tunnel. This stress is larger in magnitude than hydrostatic
pressure. In such a situation it is reasonable to expect, from the theory of
creep under multi-stress components of this section, that the closure rate
will be of the order of C6t"- 1)p. Thus the closure rate is linearized with
respect to P and the closure rate is increased. In Figure 3 are shown Glen’s
data, which are treated as if 6 were equal to zero. It can be seen that the
closure rate is indeed approximately proportional to P, and is considerably
larger than the usual closure rate that is proportional to p3.

In glacier and ice sheet flow problems similar multi-stress component
effects occur. Moreover, different ice fabrics develop under different stress
components. In a glacier there exist at least two stress components : a shear
stress that acts across any plane that is parallel to the bed of the glacier, and
a longitudinal compressive or tensile stress component that acts along the
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CREEP DEFORMATION OF ICE 233

length of the glacier. They both influence the flow that causes a borehole to
tilt, making it more difficult to interpret tilt measurements.

Effect of Hydrostatic Pressure

The effect that hydrostatic pressure has on the creep rate is not well
established at the present time. The melting temperature of ice changes in
an anomalous manner with pressure. It decreases, rather than increases,
with pressure at a rate of -7.4 x 10-s°c Pa-1. Thus it is reasonable to
expect that increasing the pressure at a constant test temperature will
increase the creep rate because the melting temperature is brought closer to
the test temperature. The first determinations of the activation volume gave
V = -2 x 10-s m3 mole-1 = -3.3 × 10-29 m3 (review W). These two
experiments are preliminary (see review W), but they do show that the creep
rate is increased by an amount expected from the decrease in the melting
temperature. However, Higashi & Shoji (1979) find in a constant strain rate
experiment on Antarctic ice that the maximum stress of the monotonically
increasing stress-strain curve increases with the hydrostatic pressure. This
result implies that hydrostatic pressure decreases the creep rate. Higashi &
Shoji attribute the hardening increase with pressure to the fact that air
bubbles in the ice are reduced in volume and cleavage cracks are closed by
the higher pressure.

Very recent experiments by Jones & Chew (1982) on polycrystalline ice
tested at -9.6°C under a compressive stress of 0.525 MPa gave the
surprising result that the creep rate decreased from 8.3 × 10-9 s-1 to
7 x 10-9 S-1 when the superimposed hydrostatic pressure was increased
from 0.1 to 15 MPa. The creep rate went through a minimum at pressures
between 15 and 30 MPa. Above 30 MPa the creep rate increased with
increase in pressure, and reached a value of 17 x 10-9 S-1 at a pressure of
60 MPa. The activation volume changed from + 3.2 x 10-5 m3 mole-1 =
5.3 x 10 -29 ma to -5.5 x 10-5 m3 mole-1 = -9.2 x 10 -29 m3 as the
pressure was increased. Jones points out that these results imply that
several processes are controlling the creep rate. (We have already seen that
different processes probably control the rate of easy glide and hard glide.
Perhaps Jones’ results involve both these mechanisms.) Recent results of
Durham et al (1982) indicate that the activation volume is negative.

The effect of hydrostatic pressure on grain growth has been studied by
Azuma & Higashi (1982). The rate of growth increases with pressure as well
as temperature. The activation energy is 77 kJ mole-1 and the activation

volume is -6.68 x 10-5 m3 mole-1 = _ 11 x 10-29 m3. Paterson (1981,
p. 18) has determined an activation energy of grain growth in polar firn of
only 42.3 kJ mole- 1.
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234 WEERTMAN

VELOCITY OF INDIVIDUAL DISLOCATIONS

The velocity of individual dislocations in ice can be measured directly. In
Figure 6 are plotted measured velocities of dislocations on the basal plane
of pure ice versus applied basal shear stress. The velocity is proportional to
the stress. The activation energy for motion determined by varying the
temperature is approximately the same as the creep activation energy. [Mai

et al (1978) have found that dislocations move about 50~o faster in ice that 
doped with HF.]

A partly phenomenological, partly theoretical creep rate can be found
by using the Figure 6 data in creep equation (1) and by using (3) to estimate
the steady-state dislocation density. In (i) and (3) use g = fl 
b = 4.5 x 10-1° m, ~--3 x 109 Pa, and assume that the Figure 6
data are reasonably accounted for if v = 6 x 10-7 m s-1 at a shear
stress of 0.1 MPa. The creep rate versus stress plot calculated this way
is shown in Figure 3 (where shear creep rate and shear stress have been con-
verted to the longitudinal creep rate and stress appropriate for uniaxial

I0

I I I

iO-r i0-~ i0-~ i0-’~

DISLOCATION VELOCITY meter/second

Figure 6 Dislocation velocity (normalized to - 10°C using Q = 60 kJ/mole) versus stress.
Data from the following sources. FH: Fukuda & Higashi (1973); JG: Jones & Gilra (1973);
HS : Higashi & Sake (given in FH); PM : Perez et al (1978) and Mai et al (1978).
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tension and compression). This calculated creep rate can only be accurate
to about a factor of about 5 because of the rough nature of the analysis.
It appears, therefore, that easy glide can be accounted for since the easy-
glide curve and the calculated curve lie within a factor of 2 to 3 of each other
in Figure 3.

A complete theory also would account for the velocity-stress relationship
of Figure 6. Mechanisms that give a linear velocity-stress relationship
involving stress-induced order of protons in the stress field of a dislocation
and bond-breaking proton rearrangements and/or defect reorientations in
the core regions of dislocations have been proposed. The stress-induced
order mechanism predicts a dislocation velocity of 5 x 10-7 m s-1 at
-10°C and at a stress of 0.1 MPa (see review W). This value agrees quite
well with the data of Figure 6. (However, in review W it is pointed out that
this mechanism probably can be ruled out if the creep rate indeed increases
with pressure.)

The core region mechanism, which has been analyzed repeatedly (Glen
1968, Perez et al 1975, Whitworth et al 1976, Frost et al 1976, Forouhi &
Bloomer 1978, Whitworth 1980, 1982, Goodman et al 1981) initially
appeared to give a basal dislocation glide velocity much smaller than
observed. However, more recent developments of the theory make it appear
likely that dislocations controlled by this mechanism do move with about
the right velocity.

Polycrystalline ice and ice in a hard orientation creep more slowly by a
factor of about 500 than ice of a soft orientation. If the second glide-
controlled mechanism does apply to glide on nonbasal planes with
predicted dislocation velocities as low as found in the original theories, it
might account for the lower creep rates in the harder ice.

Dislocation climb, however, cannot be ruled out as the rate-controlling
process of the harder ice. The climb velocity of an isolated edge dislocation
is approximately equal to (Weertman 1975)

v ~- (D/2b)(a~/kT), (15)

where ~ = 3.2 × 10-29 m3 is the molecular volume for ice, k = 1.38
x 10-23 J K-1 = Boltzmann’s constant, and D = Do exp(-Q/kT) is the
self-diffusion coefficient for ice. Here Do -~ 1.5 x 10-3 m2 s-1 and Q =
60 kJ mole- 1 for both hydrogen and oxygen diffusion (see review W). 
T = 263 K (-- 10°C) and cr = 0.1 MPa the climb velocity v is equal to v = 2.0
x 10-9 m s-1. This velocity is a factor of 300 smaller than the

experimentally determined glide velocity of 6 x 10- 7 m s- ~ given above, a
factor of similar magnitude as that between the creep rate of the soft ice and
the hard ice. Therefore the climb mechanism can account quantitatively for
the creep of the harder ice. The deceleration in the creep rate of the creep
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236 WEERTMAN

curve and, in the constant strain rate test, the monotonic increase of the
stress-strain curve of the hard ice are explained if the glide motion is faster at
the same stress level than the climb motion. Thus the exercise given earlier is
partly solved. But now another problem remains to be solved : If the climb
velocity is so small compared with the glide velocities of Figure 6, why
doesn’t climb control the creep rate of easy-glide single crystals and cause
the creep rate of such crystals to be about the same as that of polycrystalline
ice? [Duval & Ashby (1982) have concluded that glide-controlled creep 
not important for polycrystalline ice and that recovery dislocation
processes, which I assume involve dislocation climb, may be.]

Discussions of other creep mechanisms proposed for ice are given by
Landgon (1973), Goodman et al (1977, 1981), Gilra (1974), Perez et al (1978),
and in reviews G and W.

CREEP OF ICE OTHER THAN ICE Ih

Only very limited creep results on ice in a crystalline form other than ice
Ih have been obtained up to now. Poirier et al (1981) measured an effec-
tive viscosity of ice VI at room temperature at pressures in the range of
1.1-1.2 GPa in a sapphire anvil press. They found a viscosity of 101’~ poise
(1013 Pa s). The shear stress where this effective viscosity is determined is 
the order of 90 MPa and the creep rate in shear of the order of 3 × 10-6 s - 1.
Thus this ice is considerably harder than ice Ih. If a third power law is
assumed to extrapolate the creep rate to stresses of the order of 1 to 10 MPa
(10 to 100 bars), the effective viscosity is increased to 1017 to 1020 poise.

Poirier (1982) has briefly described unpublished preliminary results 
Echelmeyer & Kamb on the effective viscosity of ice II and ice III. Ice II is
somewhat more viscous than ice Ih at a given temperature (but different
pressure), but ice III is three orders of magnitude less viscous than ordinary
ice. Durham et al (1982, private conversation) have studied the ductile and
the brittle deformation of ice at pressures up to 350 M Pa and temperatures
between 77 and 195 K. The brittle strength of a higher density ice phase was
found to be 156 MPa at 158 K and 350 MPa. Lack of X-ray data prevented
identification of the phase, which probably is ice IX but could be ice II.

CONCLUSION

The quasi-steady-state creep rate of coarse grain and single crystal ice at
moderate stress levels and at relatively large strains is best described by a
power-law creep equation with a power exponent equal to three. The
activation energy of creep, 60 k J/mole, is the same as that of self-diffusion of
hydrogen and oxygen. The creep rate of single crystals oriented for easy-
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CREEP DEFORMATION OF ICE 237

glide, basal slip can be accounted for with experimentally measured values
of the glide velocity of individual basal dislocations. The creep mechanism
of polycrystalline ice and ice single crystals in a hard orientation in which
basal slip is not possible is not certain. Although a dislocation climb
mechanism can account for the observed creep rates for this harder ice, it is
not possible to conclude that this mechanism actually is rate controlling.

For purposes of ice modeling the best constants to use in the equivalent of
a uniaxial tension or compression test appear to be a creep rate of 10-1o s- 1
under a stress of 0.1 MPa and a temperature of -10°C. To obtain
creep rates at other stress levels, a power exponent of n = 3 can be used. To
obtain the creep rates at other temperatures, the activation energy to use is
60 kJ mole- 1 for single crystal ice and polycrystalline ice below -10°C.
For polycrystalline ice above -10°C the activation energy to use is
134 kJ mole-1. These values of creep rate, power exponent, and activation
energy are almost identical to those recommended by Paterson (1981,
p. 39, and private communication) when his constants are converted into
those appropriate to the uniaxial stress condition. In polycrystalline ice
with the c-axis strongly aligned to the vertical, the creep rate in shear parallel
to the glacier bed ought to be increased by a factor of four. The effect of
hydrostatic pressure in any ice sheet or glacier on the creep rate should be
rather small, and except for the thickest ice sheets can ordinarily be ignored.
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