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The time of crystallization of a 100 km thick ocean on Europa is estimated using a Stefan-style solidifica-
tion solution. This solution is then extended to estimate the present thickness of the ice shell. It is
assumed that the shell is initially in a steady-state conductive regime, and the ocean is taken to be an
infinite liquid half space cooling from above. We find that in the absence of tidal heating and without
the presence of low-eutectic impurities to serve as anti-freezes, a 100 km thick ocean solidifies in about
64 Myr. Conversely, when considering the present thickness of Europa’s ice shell, if tidal heating is
included at a global dissipation rate of �1 TW, the shell is found to be, on average, approximately
28 km thick. However, if this dissipative heating is solely restricted to the shell, the local rate of heating
may vary significantly due to crustal compositional heterogeneities and it is shown that this process may,
in turn, produce thermal maxima in the crust, which could lead to local melting and structural instabili-
ties, perhaps associated with the formation of chaos regions. Our approach is also extended to Ganymede
and Callisto in order to estimate the time of solidification of their putative subsurface oceans and the cur-
rent thicknesses of their ice-I shells.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Estimated thicknesses for Europa’s ice shell range from a few
kilometers or less (Carr et al., 1998; Greenberg et al., 1998, 1999;
Williams and Greeley, 1998; Turtle and Pierazzo, 2001; O’Brien
et al., 2002) to P10 km (Ojakangas and Stevenson, 1989;
Pappalardo et al., 1998; Rathbun et al., 1998; McKinnon, 1999;
Schenk, 2002; Figueredo et al., 2002; Sotin et al., 2002; Schenk,
2002; Hussmann et al., 2002; Tobie et al., 2003). Europa’s crustal
thickness is central to understanding the formation and develop-
ment of various surface features such as chaos and lenticulae,
and also for regulating the potential for ascent and eruption of cry-
omagmatic melts. Therefore, placing firmer constraints on its value
is vitally important to obtaining a more complete understanding of
the various geophysical processes that are currently occurring, or
that may have recently occurred, on the icy moon.

Complete solidification of Europa’s ocean must be forestalled by
a high degree of internal heating due mainly to tidal effects in the
Jovian system. This process, clearly being in a near or quasi steady
state and having existed for billions of years, has likely contributed
greatly to the ongoing evolution of the ice shell. Judging from the
heterogeneous nature of Europa’s surface features (Greeley et al.,
1998, 2000; Pappalardo et al., 1999), the crust itself is also likely
to be highly heterogeneous. Although later we will consider the
possible sequence of events leading to Europa’s present state of
an extensive ocean underlying a relatively thin crust, here we sim-
ply use this state as an initial condition.

We therefore assume that Europa’s icy shell was formed by the
gradual freezing of its ocean from above, and employ a Stefan-style
(i.e., Neumann’s solution) solidification solution to analyze three
slightly different situations: first, in order to set an upper bound
on the solidification timescale, an estimate is made of the time of
solidification of the subsurface ocean in the absence of any internal
heat sources; second, bounds are placed on the thickness of the ice
shell assuming a global dissipation rate as a steady heat source;
and third, when dissipation is restricted to solely take place within
the ice shell, the thermal regime of the shell is investigated as a
function of its thickness and the local heating rate, both of which
may vary due to compositional heterogeneities in the shell.
These results are then employed to discuss possible present day
geological processes on Europa.
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Finally, we extend our analyses to investigate the potential for
internal oceans in Ganymede and Callisto and the corresponding
thicknesses of their icy crusts.
2. The Stefan problem

The change of phase of water from liquid to solid and the result-
ing release of latent heat involved in the growth of Europa’s shell is
akin to the process of cooling of a sheet of magma, which has long
been studied (e.g., Jaeger, 1965, 1968; Marsh, 1989, 2007). The
striking differences, of course, are: (1) the water–ice system solidi-
fies at a specific temperature, whereas silicate magmas have a pro-
nounced liquidus and solidus which are separated by 200� or more,
and (2) the ensuing solid in silicate systems is more dense, and
thus of smaller volume, than the melt from which it came.
Nevertheless, this method of analysis is applicable to investigating
the crystallization of Europa’s ocean.

Here, Neumann’s solution of the Stefan Problem is considered,
which describes the cooling and solidification of an infinite half
space of liquid where solidification takes place at the solidification
front, i.e., the well-defined boundary separating solid and liquid
phases, along which the liquid crystallizes to a single, pure com-
pound. The solidification front is thus the plane that moves in
response to the addition and subtraction of heat from the system.
Assuming an initially ice free, pure water ocean on Europa, the
solidification front, S(t), measures the position of the ice–water
interface over time, which defines the instantaneous thickness of
the ice shell in response to the gradual cooling of the ocean
(Fig. 1). The full solution to the Stefan Problem is given in the
Appendix A. This solution is obtained by solving the diffusion equa-
tion in each medium, ice and water, and subsequently matching
the solutions at the interface (i.e., at S(t)) through the boundary
condition that the upward heat flux out of the ice is balanced by
the sum of the heat flow from the underlying water and latent heat
released during the progressive freezing of the ocean (see bound-
ary conditions (iv) and (v) in the Appendix A). A well-known result
of Neumann’s Solution is that the position of the solidification front
is given exactly by:

S0ðtÞ ¼ 2b
ffiffiffiffiffi
F1

p
ð1Þ

(see (A8) in the Appendix A) where S0(t) = (S(t)/L) is the non-dimen-
sional form of S(t), and F1 = j1t/L2, where j1 is the ice thermal
diffusivity and L is the ice shell thickness. The constant b contains
all the effects of both the latent heat (H) and the contrasting
Fig. 1. Geometry for solidification of Europa’s subsurface ocean. Here, the ice shell
is represented as the solid layer, while the subsurface ocean is represented as the
layer of liquid. The upper surface of the crust is assumed to have the constant
temperature, T = 100 K, while the boundary between the crust and ocean has a
constant temperature, T = 273 K. Here, qT represents the conductive heat loss that
promotes advancement of the solidification front. Basal heating from tidal
dissipation is added to the system at a rate of �1 TW.
thermal diffusivities (j1 and j2) between ice and water. This equa-
tion states that the ice shell grows in direct proportion to the pro-
duct of the square root of the dimensionless Fourier number (j1t/
L2) and the constant b, which is always of order unity (i.e.,
0 < b < 1). After applying the appropriate boundary conditions, the
transcendental equation for determining the constant b as a func-
tion of all the thermal properties and the prevailing temperatures
in the system emerges, namely:

beb2

erf ðbÞ ¼ cp1
ðTmelting � TcoldÞ

H
ffiffiffiffi
p
p ð2Þ

where cp1 is the specific heat at constant pressure of the solid phase
(i.e., ice), Tmelting is the temperature at which the liquid phase melts,
and Tcold is the surface temperature. The mathematical procedure
necessary to obtain this expression is reviewed in detail in the
Appendix A.

In the following sections, we will apply (1) and (2) to estimate
the timescale for complete crystallization of Europa’s ocean and
the thickness of the ice shell.

3. Solidification of Europa’s ocean

To estimate the time of complete solidification of Europa’s
ocean, the ocean itself is taken to be an initial liquid half space
freezing from the top down, with no internal heating. Since
Europa’s hydrosphere is thin (�100 km) relative to the radius of
the moon itself, solidification may be approximated as a flat ice
slab overlying a sheet of water. The rate of freezing of the ice shell
may then be measured by the temporal progression of the solid-
ification front, S(t) (Fig. 1).

The temporal progression of the solidification front is described
above by (1). Recalling that S0(t) = S(t)/L and F = jt/L2, (1) may be
rewritten to yield the time, t, of complete solidification, namely,

t ¼ ½SðtÞ�
2

4jb2 ð3Þ

Here, j = 6.4 � 10�6 m2/s is the thermal diffusivity of water ice at
100 K (Hobbs, 1974) and the constant b may be obtained from a plot

of beb2

erf ðbÞ vs. b as described in the Appendix A.
Taking cp = 833 J/kg K (Petrenko and Whitworth, 1999) as the

specific heat of the ice shell at Tcold = 100 K, H = 330 kJ/kg as the
latent heat of fusion of ice at 273 K (Carslaw and Jaeger, 1959;
Hobbs, 1974), Tmelting = 273 K, and employing (2) as described
above to determine b, returns b = 0.438 (Fig. 4-31 of Turcotte and
Schubert, 2002; Marsh, 1989, in preparation).

Taking the initial depth of Europa’s ocean to be S(t) = 100 km
(Anderson et al., 1998; Pappalardo et al., 1999) and using these
parameters in (3) returns a time for complete solidification of
approximately 64 Myr. This result is reasonable under these condi-
tions, and illustrates that in the absence of tidal heating, it is highly
unlikely that any ocean would persist in Europa until the present
day. The presence of a substantial liquid layer inside Europa today
clearly reflects the significance of tidal heating, and to a much les-
ser extent, the likelihood of sulfate or chloride salts and/or mineral
acids, acting as low-eutectic contaminants (Kargel, 1991a;
Hogenboom et al., 1995; Kargel et al., 2000; Zolotov and Kargel,
2009; Brown and Hand, 2013).

4. Thickness of Europa’s ice shell

As previously mentioned, the prevailing thickness of Europa’s
crust reflects a balance between local thermal and compositional
regimes and outward global heat loss. The thickness of the ice shell
places fundamental constraints on the proximity of water to the
surface and the ease with which any subsurface melts may extrude
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onto the surface. Further, it has implications for potential modes of
chaos formation (e.g., see Greenberg et al., 1999; Pappalardo et al.,
1999; Collins et al., 2000; O’Brien et al., 2002). By further employ-
ing the solidification model as outlined above under the additional
assumptions that Europa’s ice shell is in a quasi steady-state,
Stefan-style, conductive regime, where outward heat loss is bal-
anced by heating from below due to tidal dissipation (Fig. 1), more
robust constraints may be placed on the thickness of the crust.
Hussmann et al. (2002) and Hussmann and Spohn (2004) explored
Europa’s equilibrium ice shell thickness under a variety of condi-
tions. In contrast to those models, we do not take into account
changes in viscosity in the ice shell as manifested by multiple rheo-
logical layers; we simply assume that all heating in the ice shell is
due to tidal dissipation and ignore the effects of radiogenic heating
from the mantle. Furthermore, in the models presented here we do
not consider, in detail, Europa’s thermal–orbital evolution as it
relates to those of Io and Ganymede.

The total heat flow, QT, in Europa can be expressed as:

Q T ¼ Q D þ Q Rad þ QP þ Q S ð4Þ

where QD, QRad, QP, and QS represent, respectively, dissipative heat-
ing, radiogenic heating, primordial heat from accretion, and heat
released from solidification of the ocean. However, for the case of
a quasi-static ice shell thickness, contributions from radioactivity,
accretion, and crystallization of the ocean can be neglected, leaving:

Q T ¼ Q D ¼ Akc
dT
dz

ð5Þ

where A = 4pR2 is Europa’s surface area, kc is the thermal conductiv-
ity of ice, and z represents depth in the shell. If as we have assumed,
QT is mainly due to tidal dissipation, (5) may be used to determine
the thickness of the icy shell. Presuming that the thickness of the
shell, d, is much less than Europa’s radius so that R remains rela-
tively constant, dT becomes DT, while dz goes to d. Substituting
these variables into (5) and rearranging allows the thickness of
the icy shell to be expressed as:

d ¼ kcDT4pR2

Q D
ð6Þ

where R = 1560 km is the mean radius of Europa, DT is the differ-
ence in temperature between Europa’s surface (Tavg = 100 K) and
the melting temperature of ice, and kc = 5.4 W/m K is the thermal
conductivity of water ice at 100 K (Hobbs, 1974). Note that although
kc is likely to vary in the ice shell, assuming a constant value ensures
minimum insulation in the shell and thus serves to keep our results
conservative. Furthermore, according to Eq. (5.6) of Hobbs (1974),
the average thermal conductivity for an ice shell with an average
surface temperature of 100 K and a basal temperature of 273 K is
�4 W/m K. Hence, our use of kc = 5.4 W/m K to represent the ther-
mal conductivity of the entire crust is reasonable.

Assuming a constant melting temperature of 273 K for water
ice, Hussmann and Spohn (2004) used an expression similar to
(6) to determine Europa’s equilibrium ice shell thickness over time.
However, the change in melting temperature of water ice with
pressure must also be taken into consideration. The pressure-de-
pendent melting temperature of ice may be expressed as
Tmelting = 273.16–1.063 � 10�7 Pd (Kirk and Stevenson, 1987; Ruiz,
2001), where Pd is the pressure at a depth, d, below the surface,
in Pascals. With this in mind, (6) may be rewritten as

d ¼ kc ð273:16�1:063�10�7qgdÞ�Tsurface½ �4pR2

Q D
where q = 1000 kg/m3 is the den-

sity of water ice and g = 1.31 m/s2 is acceleration due to gravity on
Europa. Rearranging this expression returns:

d ¼
273:16K � Tsurface

� �
kc4pR2

Q D þ 1:063� 10�7qgkc4pR2
� � ð7Þ
as the expression for ice shell thickness when the changing melting
point of water ice due to pressure is considered.

It must be noted that at this stage, it is immaterial exactly
where dissipation takes place on Europa, only that the dissipation
budget is responsible for preventing total freezing of the ocean.
Nevertheless, it has been demonstrated that a significant propor-
tion of this budget is dissipated within the ice shell itself (Barr
and Showman, 2009; Sotin et al., 2009). Therefore a more detailed
treatment, where the steady-state conduction equation has a term
describing a heat source in the shell, is necessary. Such a treatment
will be explored in Section 5. Here, however, mainly for simplicity,
we assume that global heat dissipated in Europa can be accurately
described by the steady-state conduction equation regardless of
the exact location of the heat source.

If all energy imparted to Europa by tidal dissipation is dispersed
as heat, then the amount of heat imparted to Europa may be calcu-
lated as:

QD ¼
21
2

k2ðxRÞ5e2

Q oG
ð8Þ

(Roberts and Nimmo, 2008; Sotin et al., 2009; J. Roberts, personal
communication) where QD represents the amount of energy dissi-
pated per unit time, k2 is the degree-two Tidal love number, Qo is
the dissipation factor, x, R, and e are Europa’s tidal forcing fre-
quency, radius and orbital eccentricity, equal to 2 � 10�5 s�1,
�1560 km, and 0.009, respectively, and G is the gravitational con-
stant, equal to 6.67 � 10�11 m3/kg s2. Assuming that k2 = 0.25 and
Qo � 100 (Ojakangas and Stevenson, 1989; J. Roberts, personal com-
munication), (8) returns QD = 9.4 � 1011 W, or, approximately 1 TW,
as a representative amount of tidal energy dissipated in Europa.
Substituting this value into (7) returns a value for the thickness,
d, of Europa’s crust, of approximately 28 km, corresponding to
Tmelting = 269 K at the base of the crust. Hence, the thickness of the
icy shell can be thought of as being approximately 28 km per ter-
awatt of dissipated energy. In the model of Hussmann and Spohn
(2004), the total heat production rate in Europa was taken as the
sum of heat imparted from dissipation in the ice shell and radio-
genic heat sources in the mantle. Though their value for the heat
production rate was somewhat lower than our calculated value
for QD, their findings, as illustrated in Fig. 6d and f of Hussmann
and Spohn (2004), suggest that at present, Europa’s ice shell is
approximately 22 km thick, which is in general agreement with
our results.

In the following section, the sensitivity of d will be evaluated
when QD and other parameters are varied.

5. Dissipative heating in the ice shell and chaos formation

As was mentioned above, when tidal heat is dissipated mainly
in the ice shell (Barr and Showman, 2009; Sotin et al., 2009), a
slightly more involved thermal model must be considered. Under
steady state conditions with a volumetric heat source, E, due to
tidal dissipation, evenly distributed throughout an ice shell of
thickness d, the governing heat conduction equation ((A1) and
(A2)) reduces to:

E ¼ �kc
d2T

dz2

" #
ð9Þ

Here, the thermal regime is assumed at steady state, making
@T=@t ¼ 0 in (A2), and a heat source E (with units of W/m3) has been
added to the right hand side of (A2). We also hasten to add that,
although we assume that dissipation is evenly distributed in the
shell, any number of models for the detailed spatial distribution
of dissipative heating in the shell can be employed here. These
variations can be linked to shell thickness, temperature, and/or
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suspected compositional variations. Here we make the most basic
assumption of even heating.

Eq. (9) can be twice integrated to yield:

T ¼ �ðE=2kcÞz2 þ C1zþ C2 ð10Þ

Applying the usual boundary conditions of a surface temperature
T(z = 0) = To and the temperature at the ice–water interface
T(z = d) = T1, the constants of integration can be found, namely:
C1 = (T1 � To)/d + Ed/2kc and C2 = To, which, upon substituting into
(10) and algebraic manipulation, gives:

TðzÞ � To

T1 � To
¼ Ed2

2kcDT

" #
z
d

� �
� z

d

� �2
� �

þ z
d

� �
ð11Þ

where To = 100 K is Europa’s average surface temperature,
T1 = 269 K is taken to be the temperature at the base of the ice shell
(i.e., at z = d), E is the heat source per unit volume due to tidal
dissipation and DT = (T1 � To). The remaining symbols are as pre-
viously defined. Defining non-dimensional parameters as

T 0 ¼ TðzÞ�To
T1�To

, E0 ¼ Ed2

2kcDT and z0 ¼ z
d, (11) becomes, after some

rearrangement:

T 0 ¼ �E0z02 þ z0ð1þ E0Þ ð12Þ

Here it is clear that in the limit of no heat source (i.e., E0 = 0), the
thermal regime goes to the expected linear conductive regime of
T0 = z0. That is, in dimensional form:

TðzÞ ¼ To þ
ðT1 � ToÞ

d
z ð13Þ

Results obtained from employing (12) when 0 6 E0 6 10 are
shown in Fig. 3. With increasing levels of heating (i.e., increasing
E0), as expected, there is an obvious maximum temperature in
the mid-crust at a depth zm, which can be found explicitly by tak-
ing the first derivative, dT0/dz0, of (12) and setting the result equal
to zero, giving:

zm ¼
1
2

1þ 1
E0

	 

ð14Þ

where, as E0 increases, zm approaches 1/2; this maximum is exactly
at the mid-crust. For an ice shell of thickness, d = 28 km, the mid-
crust would be 14 km below the surface. Further, for Q = 1 TW, as
calculated in Section 4, and a radius of 1560 km, E = (1 � 1012 W/
1.6 � 1019 m3) = 6.3 � 10�8 W/m3.

The physical meaning of the parameter E0 is useful to consider in
more detail. From the definition above, E0 can be rewritten as

E0 ¼ Ed=2
kcDT=d

¼ Ed=2
Q

ð15Þ

where the denominator is the background heat flux when there is
no additional heat source (e.g., only radiogenic heating is consid-
ered), and the numerator is the magnitude of the heat source due
to tidal dissipation. So the parameter E0 can be thought of as a heat
source whose strength is measured in multiples of Q, the back-
ground heat flow for no anomalous heating.

It is critically important to point out in these results (Fig. 3) that
the level at which melting, and thus water production, takes place
rises increasingly higher in the crust with increasing E. Even at the
low levels of E0 = 2 or 3, melting may extend almost 70% of the way
through the crust. Although levels of dissipative heating this high
may seem unreasonable, it is possible they may occur locally.

Further, it is highly unlikely that any planetary body undergoing
long-term magmatism and/or volcanism can have a homogeneous
crustal structure. Judging from the varied and heterogeneous nat-
ure of Europa’s surface features (Pappalardo et al., 1999; Greeley
et al., 1998, 2000) this is likely to be so for Europa. If so, it is also
likely that in correspondence to this inherent heterogeneity the
magnitude of tidal dissipation in the crust may not be globally uni-
form. These possibilities were discussed in some detail by Prieto-
Ballesteros and Kargel (2005), and our results (Fig. 3) are in concert
with their insights.

Fig. 6b of Prieto-Ballesteros and Kargel (2005) suggests that if
Europa’s crust is enriched in hydrated salts, locally high thermal
gradients may exist, perhaps leading to melting near the midcrust
for an epsomite-rich icy shell experiencing tidal heating with mag-
nitudes on the order of what we have considered here. Significant
variations in local dissipation may therefore be due to either speci-
fic local rheological properties of the shell itself, such as the pres-
ence of low-eutectic contaminants which may locally enhance
viscosity and therefore dissipation (Han and Showman, 2005;
Prieto-Ballesteros and Kargel, 2005; McCarthy et al., 2007), varia-
tions in ice porosity and grain size (Nimmo and Manga, 2009), tem-
perature variations in the ice shell (Han and Showman, 2005; Barr
and Showman, 2009) or orbital influences (Hussmann et al., 2002;
Hussmann and Spohn, 2004; Mitri and Showman, 2005). Such
variations would cause E to vary locally and the local thermal
regime would thus also vary. In areas where dissipative heating
is enhanced, the crust may undergo enhanced internal heating at
mid-crustal levels. This heating may destabilize the crust, espe-
cially in areas already thin, creating migrating pockets of melt
water. Circumstances such as these may lead to the necessary con-
ditions suggested by Schmidt et al. (2011) for producing chaos.
Moreover, in such areas, deeper solutions from the underlying
ocean may rise high in the crust, allowing for a period of high level
circulation. We hasten to add however, that this overall condition
of local heating and melting will certainly be transitory, and with
melt production the enhanced heating will be extinguished and
the crust will refreeze, perhaps adding new heterogeneity to the
ice shell for another eventual cycle of elevated heating. Previous
workers have also suggested that similar processes may have
occurred on Europa (Hussmann et al., 2002; Hussmann and
Spohn, 2004).
6. Discussion

6.1. Implications for Europa

In the case of no internal heating, the timescale found here of
�62 Myr for the complete crystallization of Europa’s ocean is
broadly similar to that of �10 Myr reported by Pappalardo et al.
(1998); these authors included the effect of basal solid-state con-
vection, which would serve to hasten cooling. Our results are also
in concert with the findings of Roberts and Nimmo (2008), who
report a solidification time of �30 Myr for a 40 km thick ocean
on Enceladus.

Previous workers have shown that once Europa’s ice shell
becomes thicker than �20 km, a basal convecting layer is likely
to develop (Pappalardo et al., 1998; McKinnon, 1999; Tobie et al.,
2003). The effects of solidification on a convecting ice shell on
Europa were considered by Cerimele et al. (2008). Pappalardo
et al. (1998) proposed that convection within such a layer, coupled
with tidal dissipation in the overlying brittle portion of the ice
shell, may allow a subsurface ocean to persist in Europa to the pre-
sent day. A 28 km thick ice shell, as found here, is thus likely to
convect (Barr and Showman, 2009). Although inclusion of a basal
convective layer would alter the heat balance in the models pre-
sented, the net resistance to heat transfer in the shell would still
be set by the ability of the overlying stagnant lid to conduct heat
to the surface. Hence although convection would influence the
thermal gradient at the base of the ice shell, the overall times
and length scales considered here (i.e., solidification timescale of



Fig. 2. Thickness of Europa’s ice shell as a function of surface temperature and the
magnitude of internal heating. The upper curve represents shell thickness near the
poles (i.e., TS = 50 K) when the heat source due to tidal dissipation is equal to that at
the equator (i.e., Q = 1 TW). The middle curve represents shell thickness near the
equator where the average surface temperature is close to 100 K. The lowermost
curve represents shell thicknesses for the polar regions in the case where the heat
dissipated is four times that dissipated at the equator.

Fig. 3. Possible temperatures (dimensionless, horizontal axis) in Europa’s ice shell
as a function of (dimensionless) depth in the crust (vertical axis) due to locally
enhanced dissipative heating (E0 , dimensionless), where the magnitude of heating is
given in multiples of the normal outward conductive heat flux, as marked against
each curve. It is likely that E0 < 4, but it could reach higher levels in extreme cases
(e.g., local enrichments of salt). Notice that even modest amounts of anomalous
heating may generate melt waters well within the crust, which in draining from the
crust may destabilize the upper crust and/or siphon deeper waters upwards into the
crust.

20 L.C. Quick, B.D. Marsh / Icarus 253 (2015) 16–24
the ocean and crustal thickness) would not be strongly affected. On
these grounds we have not taken the effects of convection into
consideration.

In terms of the ultimate sources of internal heating, radiogenic
heating rates for Europa are estimated to be �0.2–0.5 TW
(Hussmann et al., 2002; Tobie et al., 2003; Hussmann and Spohn,
2004; Sotin et al., 2009), which although not insignificant, are sub-
stantially less than expected tidal heating rates. Some of the tidal
heating may also be due to dissipation in the mantle, although it
is not expected to exceed radiogenic heating rates (Sotin et al.,
2009). Combining all of these possible sources of heating increases
QT to 1.1–1.4 TW, which, according to (7), reduces Europa’s ice
shell thickness to �21–26 km, still in general agreement with our
original results for a 28 km thick shell. In spite of our model
neglecting any significant contributions to the heat budget due
to radiogenic heating or dissipation in the mantle, this thickness
is in basic agreement with estimates of previous workers
(Ojakangas and Stevenson, 1989; McKinnon, 1999; Sotin et al.,
2002; Nimmo et al., 2003; Hussmann et al., 2002; Hussmann and
Spohn, 2004; Mitri and Showman, 2005).

Variations in ice rheological properties and Europa’s orbital evo-
lution have been previously considered (e.g., Hussmann et al.,
2002; Hussmann and Spohn, 2004). These models suggest that
the amount of internal heating on Europa may have varied over
time. If so, this implies that the thickness of the ice shell has also
varied over time, as a function of fluctuating tidal dissipation
(e.g., Hussmann and Spohn, 2004; Mitri and Showman, 2005),
and also as a function of location and surface temperature. For
example, in terms of the model presented here, according to (7),
if the amount of tidal energy dissipated within Europa is increased
to 2 TW, the average lithospheric thickness is reduced to approxi-
mately 14 km. Conversely, if it is assumed that the rate of tidal
dissipation at Europa’s poles, where the surface temperature is
50 K (Ojakangas and Stevenson, 1989), is equal to that at the equa-
tor, and kc = 10 W/m K, representative of the thermal conductivity
of water ice at 50 K (Hobbs, 1974), then Europa’s shell thickness at
the poles would be �66 km, which corresponds to an ice melting
temperature of 264 K at the base of the crust there. If however,
as has been suggested by Tobie et al. (2003), the rate of tidal
dissipation at the poles is 4 times greater than at the equator, then
d may be as small as 16.9 km there for an ice melting temperature
of 271 K at the base of the crust.

Fig. 2 shows Europa’s shell thickness as a function of tidal heat-
ing rate under a variety of conditions for Tmelting = 269 K. Owing to
the higher thermal conductivity of water ice at 50 K relative to
water ice at 100 K (kc = 10 W/m K and 5.4 W/m K, respectively;
Hobbs, 1974), heat may be more easily lost from the shell near
the polar regions, resulting in a thicker shell there than at the
equator. On the other hand, if the tidal heating rate at Europa’s
poles is indeed four times greater than that at the equator (Tobie
et al., 2003), then the ice shell could be much thinner at the poles
than it is at the equator (Fig. 2). However, imagery from the Galileo
spacecraft does not seem to support this. Although local areas of
chaos do indeed exist near the south pole (Riley et al., 2000,
2006), the absence of extensive chaos regions at the poles, as
opposed to their common occurrence near the equator (Riley
et al., 2000; Figueredo and Greeley, 2004), suggests that the ice
shell is in general thicker at the poles than at the equator.
Despite these inferences, it must be noted that the potential detec-
tion of water–ice plumes emanating from Europa’s south polar
region (Roth et al., 2014) could add credence to the possibility of
a shell of heterogeneous thickness at the poles.

In a broadly similar fashion, almost any style of compositional,
structural, or thickness variation in the icy crust could promote lat-
eral changes in local rates of tidal dissipation (Prieto-Ballesteros
and Kargel, 2005), which could lead to lateral variations in
temperature and also possibly spawn sporadic melting in the crust
(Fig. 3). These transitory processes would promote differentiation
and local refinement of the crust (e.g., as in zone refining melting),
which could introduce further structural and compositional varia-
tions, eventually leading to subtle density and strength variations
and/or possibly initiating structural instabilities.

We must also note that in the model presented in Section 2, we
have taken Tmelting = 273 K; however since the melting temperature
of water ice is pressure dependent, at a depth of 100 km on Europa
ice would be expected to melt at about 259 K. Using Tmelting = 259 K
in (2) (with the corresponding value of H = 2.4 � 105 J/kg; Hobbs,
1974) returns b = 0.422 and an ocean solidification time,
t = 69 Myr, comparable to our original result of t = 64 Myr.
Furthermore, although the initial condition for estimating the time
to full solidification of Europa’s ocean without heating was chosen
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to be an ice-free, pure water ocean at time t = 0, this is a highly
unlikely initial state. A more realistic process leading to the present
conditions on Europa is an initial accreted body consisting of a het-
erogeneous mixture of rock and ice, perhaps with a minimum of
water mainly of a transitory nature due to heating from formative
impacts. The immediate pronounced effects of tidal dissipation
within this mélange would furnish a steady source of water
migrating upward in response to compensatory sinking of rock
debris. Freezing of these initial waters at the surface could progres-
sively develop an ice shell whose growing thickness would even-
tually provide enough insulation to allow later liquid water to
collect underneath, finally attaining the present state.

In early times during ocean buildup where low temperatures
and pressures prevailed, the rock of the mélange may certainly
possesses sufficient strength to resist deformation into a coherent
mass of vanishing porosity. This was most likely the key to sustain-
ing effective dissipation and water production in the past. Over
time, this mélange–ocean interface likely migrated downward
and it is to be expected that at some depth the rock component
coalesced into a single, coherent layer due to compression caused
by the overburden of the growing ocean. However, it is possible
that this layer still contains some level of porosity in the form of
fractures that reach tens of kilometers below the ocean floor
(Vance et al., 2007). Hence at the hydrosphere–mantle interface,
it may be possible that all rock be of only marginal strength to
forego complete deformation into a consolidated mass of nil poros-
ity. If such a boundary-layer mélange could persist until the pre-
sent day, ongoing dissipation within this layer and circulation of
hydrothermal waters through it and through any seafloor fractures
beneath it, could cause occasional plumes of warm, primitive
waters to ascend upward into the overlying ocean (Lowell and
Dubose, 2005; Vance et al., 2007). Indeed, due to its much smaller
size and thus lower internal pressures, a similar process may aid in
facilitating current eruptive venting on Enceladus. On Europa,
these waters could initiate diapirism in the ice shell, a process that
will be considered in some detail in a subsequent investigation.
Nevertheless, a more comprehensive model of tidal dissipation
on Europa than we have attempted here should begin with much
more general initial conditions and account for the overall size
and composition of the entire satellite.

6.2. Implications of Neumann’s solution for Ganymede and Callisto

6.2.1. Ocean solidification
Magnetic data returned from Galileo suggests that Ganymede

and Callisto may also harbor subsurface oceans (Showman et al.,
1997; Khurana et al., 1998; Kivelson et al., 1999, 2002; Zimmer
et al., 2000). Detailed heat transfer calculations by previous work-
ers (Showman et al., 1997; Spohn and Schubert, 2003) support this
hypothesis, and Spohn and Schubert (2003) have shown that while
an ocean is unlikely for an undifferentiated Callisto, a subsurface
ocean 50–300 km thick (depending on composition, e.g., pure
H2O vs. an H2O–NH3 mixture) is possible for Callisto if it is partially
differentiated. Assuming that the ice shells on both of these moons
were also created by the progressive freezing of an ocean from the
top down, Neumann’s solution may be applied to place constraints
on the longevity of putative oceans within these bodies and the
thickness of their outer ice-I crusts.

Oceans on Ganymede and Callisto may be located at depths
greater than 150 km (Zimmer et al., 2000; Kivelson et al., 2002;
Spohn and Schubert, 2003; Moore and Schubert, 2003); hence
the melting temperature of water ice will be depressed from
273 K in (2). Tcold = 117 K and 126 K are the average surface tem-
peratures of Ganymede and Callisto, respectively (Moore and
Schubert, 2003). These temperatures correspond to
H ffi 2.4 � 105 J/kg (Hobbs, 1974), and as before, cp = 833 J/kg K
(Petrenko and Whitworth, 1999). Substituting the appropriate
parameter values into (2) for each satellite returns b ffi 0.45 and
0.44 for Ganymede and Callisto, respectively. These b values are
similar to that found for Europa in Section 2. This is no surprise
as at the temperatures under consideration, heat transfer parame-
ters for all three icy moons are nearly identical.

As for Europa, we assume that the depth of the initial ocean on
each of these moons is equal to the present thickness of their icy
crusts. Therefore, S(t) = 900 km for Ganymede, in agreement with
previous estimates for the thickness of the entire ice shell
(Anderson et al., 1996; Sohl et al., 2002). Estimated shell thick-
nesses for a partially differentiated Callisto range from 300 to
660 km (Showman and Malhotra, 1999; Anderson et al., 2001;
Ruiz, 2001; Sohl et al., 2002). We therefore explore the time of
complete solidification of an ocean for values of S(t) within this
range. Thermal diffusivities for water ice at 117 K and 126 K are
6 � 10�6 m2/s and 5 � 10�6 m2/s, respectively (Hobbs, 1974).

Substitution of these values into (3) suggests that a pure-H2O
ocean could persist within Ganymede for as much as 5.3 Gyr before
freezing out. Hence such an ocean could still be liquid today, espe-
cially if it was insulated by a substantial amount of overlying ice
(Spohn and Schubert, 2003), if tidal effects such as tidal blanketing
(Gaeman et al., 2012) were considered, or, if it contained low-eu-
tectic impurities such as Mg- and Na-sulfate salts (Spohn and
Schubert, 2003; Vance et al., 2014). For Callisto, we find that an
ocean with an initial thickness of 300 km would freeze out after
�740 Myr, while an ocean with an initial thickness of 660 km
would persist for about 3.6 Gyr. Therefore in the absence of tidal
effects at Callisto (Sohl et al., 2002; Moore et al., 2004), in order
for an ocean to persist to the present day it must contain significant
concentrations of low-eutectic impurities such as NH3 or chloride
or sulfate salts. These species have been previously predicted to
occur on Ganymede, Callisto, and other icy satellites (Kargel,
1991a,b; Kargel et al., 1991; Hogenboom et al., 1995; Spohn and
Schubert, 2003; Vance et al., 2014) and in the case of the salts,
are the likely cause of the magnetic induction signals detected by
the Galileo spacecraft at these moons (Khurana et al., 1998;
Kivelson et al., 1999, 2002; Zimmer et al., 2000).

6.2.2. Thickness of Ganymede’s ice shell
Unlike the case for Europa where tidal heating dominates over

radiogenic heating, radiogenic heating is thought to contribute
substantially to Ganymede’s heat budget (Showman et al., 1997;
Spohn and Schubert, 2003; Chen et al., 2014). Therefore in (4), QT

for Ganymede is the sum of both a radiogenic, QRad, and a tidal,
QD, component. QRad = 3.4 � 1011 W for Ganymede (Spohn and
Schubert, 2003), and QD is once again calculated from (8) subject
to the following parameters: R = 2600 km, x = 1 � 10�5 rad/s,
e = 0.0015 (Moore and Schubert, 2003), and Qo = 300 (Showman
et al., 1997). In addition, k2 is taken to be 0.8, an average of the low-
est (0.14) and highest (1.5) values considered for k2 on Ganymede
by Showman et al. (1997). Plugging these values into (8) returns
QD = 1.2 � 1010 W for Ganymede, in general agreement with recent
calculations for tidal heating on Ganymede (Chen et al., 2014).
Combining this with the radiogenic heating rate returns
QT = 3.5 � 1011 W for Ganymede. Using this value for QT,
kc = 4.6 W/m K for ice at 117 K (Hobbs, 1974), g = 1.43 m/s2 (Kirk
and Stevenson, 1987), and all other appropriate parameters for
Ganymede as identified in the previous section in (7), returns
d = 149 km for the thickness of Ganymede’s outer ice-I shell,
corresponding to a melting temperature of approximately 251 K
at its base. These results are in agreement with the findings of
Spohn and Schubert (2003) who suggested than an ocean on
Ganymede may exist 145 km below the surface, and with recent
findings by Vance et al. (2014), which suggest that a thermally con-
ducting ice-I layer on Ganymede may be up to 144 km thick. In
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addition, if Ganymede’s subsurface ocean is 50–230 km deep, as
has been previously suggested (Spohn and Schubert, 2003), our
results are in concert with magnetic data from Galileo, which sug-
gests that an ocean exists at depths between 170 and 460 km
(Kivelson et al., 2002).

6.2.3. Thickness of Callisto’s ice shell
Tidal heating at Callisto is expected to be insignificant

(Anderson et al., 2001) as evidenced by scant signs of endogenic
activity at the surface in comparison to its sister satellites (Sohl
et al., 2002; Moore et al., 2004). Thus we expect that in (4),
QT = QRad = 2.4 � 1011 W at Callisto (Spohn and Schubert, 2003).
Substituting this value into (7) with R = 2400 km (Moore and
Schubert, 2003), g = 1.24 m/s2 (Ruiz, 2001), and kc = 4.3 W/m K
for ice at 126 K (Hobbs, 1974) returns d = 163 km as the thickness
of a pure water–ice shell on Callisto. This value corresponds to a
melting temperature of approximately 252 K at the base of the
ice shell, and is in agreement with previous work by Spohn and
Schubert (2003), which suggests than an ocean on Callisto could
be found at a depth of 166 km. These results are also in agreement
with Zimmer et al. (2000) in that they suggest that an ocean may
exist on Callisto at depths less than 200 km.
7. Conclusions

The results presented here suggest that Europa’s shell is on
average, 28 km thick. However, due to lower temperatures and
higher thermal conductivities at the poles, the shell could be as
thick as 66 km there. A substantially thinner shell at the poles,
about 16.9 km thick, is possible if enhanced tidal dissipation is
experienced there (Tobie et al., 2003). If Europa’s entire hydro-
sphere is 80–170 km thick (Anderson et al., 1998), then it is indeed
possible that an extensive ocean exists beneath the ice shell.
Variations in shell thickness and thermo-rheological properties
will also lead to significant variations in local heating, which may
spawn mid-crustal melting and destabilization leading to areas of
chaos at the surface.

We find that average thicknesses of the outer ice-I shells on
Ganymede and Callisto are 149 km and 163 km, respectively, in
agreement with the results of previous, more detailed, models that
have taken heat transfer due to convection, variations in the rheol-
ogy and thermal conductivity of ice, and additional tidal parame-
ters (Ruiz, 2001; Spohn and Schubert, 2003; Moore and Schubert,
2003) into consideration.

Additionally, we find that in the absence of any internal heating,
a 100 km thick ocean in Europa, in conductive equilibrium under a
water–ice shell, could persist on the order of 60 Myr, while,
depending on its initial thickness, an ocean in Callisto would com-
pletely crystallize in <1–4 Gyr, and an ocean in Ganymede could
remain liquid for more than 5 Gyr. Significant tidal heating is
necessary for a subsurface ocean to persist on Europa to the pre-
sent day. Further, the maintenance of oceans in both Europa and
Callisto may be further facilitated by the presence of significant
amounts of low-eutectic contaminants.

The results presented here could be tested by future missions to
the Jupiter system such as the European Space Agency’s JUpiter ICy
moons Explorer (JUICE) mission and by future missions to Europa
such as the proposed Europa Clipper mission.
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Appendix A

A.1. The Stefan problem

Here we assume that initially no heat sources or any convection
exist either in the solid (i.e., the ice shell) or liquid (i.e., the ocean).
As such, the temperature in each domain is described by the heat
equation:

@T
@t
¼ jr2T ðA1Þ

where j represents the thermal diffusivity of the phase under con-
sideration. As Fig. 1 illustrates, diffusion is only in the z, or vertical,
direction. Hence, (A1) may be expressed as:

@T
@t
¼ j

@2T
@z2 ðA2Þ

In addition, cooling is governed by the following four boundary
conditions:

T ! Tsolid at z ¼ 0 ðiÞ
T ! Tliquid as z!1 ðiiÞ
Tsolid ¼ Tliquid ¼ Tmelting when z ¼ SðtÞ ðiiiÞ

q1 � q2 ¼ qH
dS
dt

at z ¼ SðtÞ ðivÞ

where Tmelting is the melting temperature of the ice, q is the density
of liquid water that changes phase at the solidification front
(marked by S(t)), and H is the latent heat released during solidifica-
tion of the liquid. The term qH dS

dt represents the advance rate of the
solidification front, q is the heat flux (i.e., the flow of heat per unit
area) in the z-direction, and the subscripts 1 and 2 represent the
solid and liquid domain, respectively (Fig. 1).

Boundary condition (iv) states that exactly at the phase-change
interface, in order for the solidification front to move a distance dS,
an amount of heat per unit area equal to qHdS, must be conducted
away from the solid–liquid interface. From Fourier’s Law of Heat
Conduction, q ¼ �kc

dT
dz, where kc is the thermal conductivity.

Hence, boundary condition (iv) may be re-written as:

�kc1

dT1

dz1
þ kc2

dT2

dz2
¼ qH

dS
dt

ðvÞ

The rate of solidification of Europa’s ocean is found by solving (A2)
for each medium, subject to boundary conditions (i)–(v).

A.2. Neumann’s solution

At t = 0, a stationary infinite liquid half space at temperature
Tliquid is considered to exist in the region z > 0. Suddenly at t > 0,
the surface of the liquid half space, located at z = 0, is brought to
a temperature Tcold < Tliquid. The liquid starts to solidify at a tem-
perature Tmelting. In order to determine the time taken for the entire
liquid half-space to solidify, or, the time required for the entire half
space to reach temperature Tsolid, and in order to ascertain the spa-
tial temperature distribution in the solid and liquid and the posi-
tion of the solidification front at all times, a solution to (A2)
must be found in both the solid and liquid mediums. Therefore,
the equations to be solved are:

@T1

@t1
¼ j1

@2T1

@z2 ðA3Þ

and
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@T2

@t2
¼ j2

@2T2

@z2 ðA4Þ

where once again, the subscripts 1 and 2 represent, respectively, the
solid and liquid domains. As previously mentioned, these equations
and their solutions are subject to an initial condition (I.C.) and
boundary conditions (B.C.) (i)–(v), all of which may be re-stated
in the following way:

I:C: : t 6 0; z > 0 : T ¼ Tliquid

B:C: #1 : t > 0; z ¼ 0 : T ¼ Tcold

B:C: #2 : t > 0; z!1 : T ! Tliquid

B:C: #3 : t > 0; z ¼ SðtÞ : Tsolid ¼ Tliquid ¼ Tmelting

B:C: #4 : � kc1

dT1

dz1
þ kc2

dT2

dz2
¼ qH

dS
dt

General solutions to the heat equation take the form

T ¼ Aerf zffiffiffiffiffiffi
4jt
p
� �

and T ¼ Berfc zffiffiffiffiffiffi
4jt
p
� �

where erf is the error function

and erfc is the complimentary error function, that is, 1 � erf, and
A and B are constants to be determined.

Solutions satisfying (A3) and (A4) and boundary conditions #1–
2 are therefore of the form:

T1 ¼ Tcold þ Aerf
z0ffiffiffiffiffiffiffiffi
4F1
p
	 


ðA5Þ

and

T2 ¼ Tliquid � Berfc
z0ffiffiffiffiffiffiffiffi
4F2
p
	 


ðA6Þ

Here, z0 = z/L and F = jt/L2. According to B.C. #3 at the location of the
solidification front, that is at z = S(t), T1 = T2 = Tmelting. Equating (A5)
and (A6) to Tmelting and letting z0 = S0(t) = S(t)/L, where S0(t) refers to a
non-dimensional form of S(t), returns:

Tcold þ Aerf
S0ðtÞffiffiffiffiffiffiffiffi

4F1
p
	 


¼ Tliquid � Berfc ¼ Tmelting ðA7Þ

The above expression is only true if the arguments are constants.

Therefore, one can assume that S0 ðtÞffiffiffiffiffiffi
4F1

p
	 


¼ b, or

S0ðtÞ ¼ 2b
ffiffiffiffiffi
F1

p
ðA8Þ

where b, which is a dimensionless constant of order less than or
equal to unity, is a function of the boundary conditions, thermal
diffusivity, specific heat, and latent heat. Expressions (A7) and
(A8) may be combined to find A and B, yielding:

A ¼ Tmelting � Tcold

erf ðbÞ ðA9Þ

and

B ¼ Tliquid � Tmelting

erfcðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1=j2

p
Þ

ðA10Þ

where the argument of erfc in (A10) follows from (A7) and (A8), in

that from (A7), S0 ðtÞffiffiffiffiffiffi
4F2

p
	 


¼ S0 ðtÞffiffiffiffiffiffiffiffiffiffiffiffi
4j2t=L2
p
	 


. Using the definition of S0(t)

from (A8) then yields 2b
ffiffiffiffi
F1

pffiffiffiffiffiffiffiffiffiffiffiffi
4j2t=L2
p
	 


¼ 2b
ffiffiffiffiffiffiffiffiffiffi
j1t=L2
pffiffiffiffiffiffiffiffiffiffiffiffi
4j2t=L2
p

	 

¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1=j2

p
as the

argument of erfc in (A10).
For the case of Europa where liquid water transforms to ice at

z = S(t), Tliquid = Tmelting, so that according to (A10), B = 0. (A5) and
(A6) can then be expressed, respectively, as:

T1 ¼ Tcold þ
Tmelting � Tcold

erf ðbÞ erf
z0ffiffiffiffiffiffiffiffi
4F1
p
	 


ðA11Þ
and

T2 ¼ Tliquid ðA12Þ

After applying B.C. #4, setting z0 ¼ S0ðtÞ ¼ 2b
ffiffiffiffiffi
F1
p

, and employing
(A9) and (A10), an expression for the constant, b, emerges:
e�b2

erf ðbÞ ¼
bH
ffiffiffi
p
p

cp1 ðTmelting�TcoldÞ
, which, upon rearrangement becomes:

beb2

erf ðbÞ ¼ cp1
ðTmelting � TcoldÞ

H
ffiffiffiffi
p
p ðA13Þ

Here cp1 is the specific heat at constant pressure of the solid phase
(i.e., ice).

The standard means of solving this transcendental equation is
to plot the left hand side against b, and then for any value of the
right hand side, which is entirely known, a corresponding value
of b can be found (e.g., see Carslaw and Jaeger, 1959, p. 287).
Once the numerical value of b has been obtained, it can be substi-
tuted back into (A8) and the time for solidification of the entire liq-
uid half space, as well as the position of the solidification front as a
function of time, can be extracted.

Note that as the latent heat, H, increases, the constant b
decreases. This reflects the slowing of the advancement of the
solidification front as the minimum value of the latent heat
required to crystallize water into ice rises. For systems such as
Europa, where the latent heat is large and the melting temperature
and specific heat are low, so much latent heat is released and must
be carried away that solidification itself is relatively slow in com-
parison to silicate magmas. It should be noted in passing that these
general results, especially the form of (A8), have been shown to
hold exceedingly well for silicate magma solidification (e.g.,
Marsh, 1989).

Eqs. (A8) and (A13) were employed in Section 2 as (1) and (2),
respectively, to determine the solidification time of Europa’s ocean.
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