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Radio Doppler data generated by the Deep Space Network (DSN)
from five encounters of the Galileo spacecraft with Callisto,
Jupiter’s outermost Galilean satellite, have been used to determine
the mass (GM) and unnormalized quadrupole gravity coefficients in
Callisto’s external gravitational field. The results are GM=
(7179.292± 0.009) km3 s−2, J2= (32.7± 0.8)× 10−6, C22= (10.2±
0.3)× 10−6, S22= (−1.1± 0.3)× 10−6, C21= (0.0± 0.3)× 10−6, and
S21= (0.0± 1.6)× 10−6. Also, four spacecraft images of Callisto
have been used to determine its mean radius. The result is R=
(2410.3± 1.5) km, with no detectable deviation from sphericity.
Derived parameters are Callisto’s mean density of (1834.4±
3.4) kg m−3 and axial moment of inertia C/MR2= 0.3549± 0.0042.
While the mean density indicates that Callisto is a mixture of rock
and ice, the moment of inertia is too small for a homogeneous mix-
ture. Accordingly, we present a suite of possible two- and three-layer
interior models that satisfy the given constraints for radius, density,
and moment of inertia. While not unique, these models show that
Callisto cannot be entirely differentiated, and that there must exist
a region of mixed ice and rock–metal, possibly extending to the
center of the satellite. c© 2001 Academic Press
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1. INTRODUCTION

After the exploration of the Jupiter system during the Gal
spacecraft’s first 11 orbital revolutions of Jupiter, a follow-
Galileo Europa mission (GEM) focused on the exploration
Europa during orbital revolutions 12 to 19. We reported gra
and interior results for Europa from four encounters on orb
revolutions 4, 6, 11, and 12 (Andersonet al.1998a). Additional
GEM encounters confirmed that the published Europa gra
field is correct (Jacobsonet al. 1999). On the other hand, pr
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3, 9, and 10 (Andersonet al.1997, Andersonet al.1998b), left
some ambiguities about whether the rock and ice within Call
are separated partially or not at all, the only definite conclus
being that a complete separation is ruled out.

Here we use additional radio Doppler data from close
counters with Callisto during a perijove reduction campaign
orbital revolutions 20 to 23, a campaign carried out to fac
tate close encounters with Io on orbital revolutions 24 and
Of the four available GEM Callisto encounters, it is the one
the 21st orbital revolution (C21) that yields most of the n
gravity information. Although we have fit Doppler data for fiv
encounters separately and in combination, it is essentially
data on the 10th and 21st orbital revolutions (C10 and C21)
determine Callisto’s gravity field. In addition, four good imag
of Callisto’s limb, taken with the Galileo imaging system, yie
new results for the satellite’s shape and mean radius. These
data on shape and gravity field provide important constraint
possible Callisto interior models.

2. SHAPE AND MEAN RADIUS

The technique of using spacecraft imaging data to de
mine the shape of a satellite has been discussed before in d
(Dermott and Thomas 1988, 1994, Thomaset al. 1998). The
technique measures limb positions by matching a mode
a bright edge and spread function to the observed bright
scanned off the limb. The image coordinates are corrected to
ordinates in kilometers at the target satellite by means of nav
tion data for the spacecraft position, and camera focal len
and distortion (Davieset al. 1994). With the inclusion of an
adjustment for camera pointing, the ellipsoidal shape can
0019-1035/01 $35.00
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TABLE I
Fits of Triaxial Ellipsoid Models to Imaging Limb Data

Image
numbera Nb Equilibriumc Best fitd km/pixel Latitudee Longitudee

383944100 293 0.096 0.096 9.48 1.91 28.64
389556200 605 0.169 0.170 6.47 −0.17 65.86
420426068 387 0.089 0.090 13.96 −0.47 56.27
420426101 479 0.117 0.117 13.96 −0.47 56.26

a Galileo image number from Planetary Data System (PDS) catalog.
b Number of data points on the limb for each image.
c RMS residual (pixels) with equilibrium fitting model, a= 2410.4 km, b=

2410.3 km, c= 2410.3 km.
d RMS residual (pixels) with ellipsoidal fitting model, a= 2410.4 km, b=

2410.2 km, c= 2410.3 km.
e Latitude and west longitude (deg) of the sub-spacecraft point in Callis

fixed IAU coordinate system (Davieset al. 1996).

determined by matching the limb coordinates to those predic
for triaxial ellipsoids. We solve for the shape in two ways. Fir
we determine the best ellipsoid with no constraints on sha
then we determine a shape with the relative axial dimensi
constrained by equilibrium theory (Dermott and Thomas 19
1994). Because only a few Galileo images of Callisto cove
a large fraction of the limb, the accuracy of both solutions f
Callisto’s shape is limited.

The results of fitting two ellipsoidal shapes to the imaging d
are given in Table I. Both solutions produce a nearly spheri
shape, and in fact any difference between them is not statistic
significant. Both fits, with RMS residuals well under 0.2 pixe
indicate little global departure from sphericity. The uncertain
in the relative measures (such as a–c) can be evaluated form
by a chi-square method (Dermott and Thomas 1988, 1994),
because this method ignores the systematic error, the resu
formal errors are not realistic. Instead, we estimate the reali
errors by noting that the range of solutions for a–c from in
vidual profiles is 0.6 km and that the systematic error for t
differences in the axes should be no more than twice this ran
still less than 0.2 pixels. However, because of the use of summ
pixel images, the absolute calibration of the limb location c
be even less accurate (Thomaset al.1998). Therefore, we adop
a realistic uncertainty in the mean radius of 1.5 km, 25% lar
than twice the range of all solutions for the difference in ax
The final result is a mean radius R= 2410.3 km± 1.5 km, with
no detectable deviation from sphericity. All three principal ax
are equal to R with a realistic error (random and systematic
±1.5 km.

3. GRAVITY FIELD

The geometry of the Callisto encounters used in the gr
ity analysis has been discussed before (Andersonet al. 1998b,
Jacobsonet al.1999). For the two best gravity encounters, C

occurred at an altitude of 528 km, a latitude of 4.6◦, and a longi-
tude of 78.7◦W, while C21 occurred at an altitude of 1041 km,
N ET AL.
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latitude of−0.7◦, and a longitude of 286◦W, where altitude is re
ferred to a sphere of radius 2410.3 km, and latitude and longi
are defined by international convention (Davieset al.1996). The
Earth–spacecraft line of sight was 90◦ from the Callisto-centered
trajectory for C10 and 32◦ for C21. Consequently, our previou
concern (Andersonet al. 1998b) that the gravity perturbation
are only measurable perpendicular to the C10 trajectory (c
track) has been alleviated by measurements of both along-
and cross-track components for C21. These two componen
in the trajectory plane, unlike the third normal component wh
yields negligible gravity information.

For purposes of modeling the gravity field, we use the s
dard Legendre expansion of the potential function V in spher
harmonics (Kaula 1966).

V(r, φ, λ) = GM

r

[
1+

∞∑
n=2

n∑
m=0

(
R

r

)n

(Cnm cosmλ

+ Snm sin mλ)Pnm(sin φ)

]
, (1)

where M is the satellite’s mass, and G is the gravitational co
tant; G= (6.67259± 0.00085)× 10−11 m3 kg−1 s−2 (Cohen
and Taylor 1999). The spherical coordinates (r ,φ, λ) are referred
to the center of mass, with r the radial distance,φ the latitude,
andλ the longitude on the equator. Callisto’s mean radius R fr
Section 2 is 2410.3± 1.5 km; Pnm is the associated Legend
polynomial of degree n and order m; and Cnm and Snm are the
corresponding harmonic coefficients. We limit the Callisto g
vity parameters to the monopole GM and to the five quadrup
coefficients J2 (−C20), C21, S21, C22, and S22. These coefficients
along with other parameters in the fitting model, are determ
from the data by weighted least squares (Moyer 1971, Ta
1973, Anderson 1974, Lawson and Hanson 1974). All o
gravity harmonics are set to zero by default. Of course all o
harmonics are not exactly zero, but the data can be fit to
noise level with just GM and the quadrupole moments, he
there is no point in including more coefficients. More coe
cients would just make the solution ill conditioned and wo
require the inclusion of a priori information on the gravity fie
or, alternatively, the use of singular value decomposition (SV
(Lawson and Hanson 1974). Basically, the flyby distances
not close enough for a detection of gravity moments beyond
quadrupole terms.

As in previous analyses (Andersonet al. 1998a, Anderson
et al. 1998b), the gravity coefficients are determined by a
lyzing each encounter separately and also in combination
might be expected, there is not enough information from
single encounter to determine all five quadrupole coefficie
and although the separate determinations are useful for run
consistency checks, they yield little substantive informati
Therefore, we present here just the results from our best c
a
bined fit (JUP158), with details of the methodology presented
elsewhere (Andersonet al. 1998b, Jacobsonet al. 1999). The



a

r

l
l

e
n

d
t
io

a

-

om

be-
, and
sity

our
t

ial

ss
to

t be
nd

d.
in-
ex-
ity.
ua-

re.
ons-
nal

in
ges
ter
ean
e
ve
of

sed
e
ter
tal

e
s for
SHAPE, RADIUS, GRAVITY FIELD

Callisto encounters included in the fit are C3, C9, C10, C20,
C21. The fit JUP158 yields GM= 7179.292± 0.009 km3 s−2,
and the quadrupole coefficients are J2 = (32.7± 0.8)× 10−6,
C22 = (10.2± 0.3)× 10−6, S22 = (−1.1± 0.3)× 10−6, C21 =
(0.0± 0.3)× 10−6, and S21 = (0.0± 1.6)× 10−6. The correla-
tion coefficient between J2 and C22 is 0.997, a reflection of the
near equatorial nature of all the encounters. The quoted e
represent our best estimates of the realistic errors.

4. INTERPRETATION

As pointed out previously (Andersonet al. 1997), it is un-
likely that the rigidity of materials that make up Callisto cou
hide a strongly differentiated satellite. Therefore, we emp
equilibrium theory (Hubbard and Anderson 1978, Mueller a
Mckinnon 1988, Zharkovet al. 1985, Schubertet al. 1994) in
all the interpretations of results, and we take C22 and the mean
density as the sole gravitational constraints on interior mod
The values of GM and R inferred from the Galileo Doppler a
imaging data yield a mean density of 1834.4± 3.4 kg m−3 for
Callisto, where the density error is dominated by the±1.5 km
error in the mean radius R.

Under the assumption that Callisto’s spherical harmonic
gree 2 gravitational field is due to the equilibrium tidal and ro
tional ellipsoidal distortion of a satellite in synchronous rotat
with its orbital period, the gravity coefficient C22 is related to
the rotational parameterqr by

C22 = 3αqr

4
, (2)

whereqr = ω2R3/GM is a measure of the forcing for rotation
flattening of the satellite. The rotational angular velocityω is
equal to Callisto’s orbital angular velocity of 21.5711 deg day−1

(Greenberg 1982), andqr is 37.034± 0.069 in units 10−6. The
dimensionless response coefficientα depends on the distribu
tion of density with depth inside the satellite (α = 0.5 for cons-
tant density). For our adopted value of C22, α is 0.371± 0.011.
From equilibrium theory and the value ofα, it follows that
Callisto’s axial moment of inertia C, normalized to MR2, is
C/MR2 = 0.3549± 0.0042, as computed from the approxima
Radau relationship (Hubbard and Anderson 1978),

C

MR2 =
2

3

[
1− 2

5

(
4− 3α

1+ 3α

)1/2
]
. (3)

Similarly, the differences in Callisto’s principal axes (c< b <
a) can be computed from (Hubbard and Anderson 1978)

a− c

c
= 2qr (1+ 3α), (4)

where c is the polar radius and (b− c)/(a− c) is exactly 1/4. The

difference in axes as inferred from the gravity field is a− c=
(377.2± 5.9) m, b− c= (94.3± 1.5) m, and a− b= (282.9±
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4.4) m, which is consistent with the measured shape fr
Section 2, where a− c= (0.1± 1.2) km, including both ran-
dom and systematic error. We ignore the small differences
tween the three axes, and hence the three principal moments
use the normalized axial moment of inertia and the mean den
to interpret results. Our determination of J2 yields a value for
α that is just barely consistent at the one sigma level with
adopted value from C22. If there were a Callisto encounter a
high latitude, this would be of concern, but with only equator
flybys, it is not statistically significant.

The inferred value of C/MR2 is significantly less than 0.4, the
value of C/MR2 for a sphere of constant density, and is also le
than the value of 0.38 for an undifferentiated model of Callis
including ice phase changes (McKinnon 1998). There mus
an increase in rock–metal fraction with depth inside Callisto, a
consequently Callisto must be at least partially differentiate

Consistent with the few constraints we have on Callisto’s
ternal structure (mean density and moment of inertia), we
plore simple two- and three-layer models of its interior dens
We use a forward modeling approach and solve Clairaut’s eq
tion for the distortion of a satellite with a given internal structu
Even the simple parameterizations adopted here are underc
trained, so we present families of possible hydrostatic inter
structures consistent with the observed mean density and C22.

The two free parameters of the two-layer models shown
Fig. 1 are the densities of the layers. The interior density ran
from the mean density of Callisto to the density of iron. The ou
shell density ranges from the density of ice to less than the m
density of Callisto. The thin solid lines in the figure give th
thickness of the outer layer in kilometers. The thick solid cur
is the locus of all two-layer models with the observed value
C22. The thick dashed lines show the limits on the models ba
on the±1σ values of C22. Models which have the observed valu
of C22 fall between two end members: a relatively pure ice ou
shell about 300 km thick overlying a mixed ice and rock–me

FIG. 1. Two-layer models of Callisto’s interior density consistent with th
observed mass and moment of inertia. Bold curves give the family of model

the nominal (solid) and one-sigma (dashed) values of C22. Thin lines are labeled
by the thickness of the outer shell in km.
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FIG. 2. Three-layer models of Callisto’s interior density consistent with the observed mass and moment of inertia for core densities equal to (left tobulk
−3 −3 −3
Io (3560 kg m ), an Fe–FeS eutectic (5150 kg m), and pure iron (8000 kg m ). The surface in three-dimensional parameter space is the family of solutions

that fit the observed constraints. The color of the surface gives the thickness of the outer layer as indicated by the colorbar.
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interior of density near 2300 kg m−3, and a thick (greater tha
about 1000 km) ice and rock–metal outer shell with a den
near 1600 kg m−3 overlying a rock–metal core.

The two-layer models are a subset (Rcore/RCallisto = 0) of the
three-layer models shown in Fig. 2 for core densities corresp
ing to the mean density of Io (3560 kg m−3), the density of Fe–
FeS (5150 kg m−3), and the density of Fe (8000 kg m−3). Models
that satisfy the mean density and moment of inertia constra
are defined by the surfaces in the three-dimensional param
space consisting of normalized core radius, middle layer den
and outer layer density. While a wide range of internal den
models is consistent with the observations of Callisto’s m
density and moment of inertia, it is possible to reach a num
of robust conclusions about Callisto’s interior.

Figure 3 shows the families of three-layer models
which the outer shell has a density appropriate for clean
(1000 kg m−3). Solid lines are for the nominal value of C22

FIG. 3. Three-layer models with outer shell density= 1000 kg m−3. The

curves give the family of models for the nominal (solid) and one-sigma (dotte
values of C22. The lines are labeled by the density of the core.
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and dotted lines represent the one-sigma variations. The cu
are labeled according to the density of the core. These mo
are bracketed by the end-member two-layer models of Fig. 1
between the extremes are several similar families of models
middle layer densities between 1600 and 2300 kg m−3. In every
case, a significant portion of Callisto has a density that can o
be explained by a mixture of ice and rock or rock–metal. Th
Callisto must only be partially differentiated, with the ice a
rock incompletely separated. The rock–metal fraction in Call
must increase with depth, but gravity data are unable to cons
the exact nature of the increase (either continuous or step-w
Whatever the distribution of rock–metal fraction with depth
is certain that ice and rock–metal are mixed together to de
of at least about 1000 km and even, perhaps, to the center o
satellite.

Based on arguments that subsolidus ice convection is ne
sary to remove the radiogenically generated heat from the r
in Callisto’s interior, and that such thermal convection wou
be inhibited by negative compositional buoyancy if rock–me
fraction increased gradually with depth, we prefer either a tw
layer model in which a large ice–rock–metal core of essenti
uniform composition is surrounded by a relatively clean ice sh
up to about 350 km thick, or a similar three-layer model wh
also has an inner rock–metal core. However, it is difficult
reconcile a metallic core with the requirement that ice and r
remain mixed throughout large portions of the interior. Se
ration of rock and metal requires temperatures far in exc
of the melting point of ice, so formation of a metallic core
Callisto should also imply complete separation of ice and ro
Formation of a rock core is less problematic, although eve
this case, the consolidation of a large (40% Callisto’s rad
rock core could release enough energy to melt a large frac
d)
(50%) of Callisto’s ice, resulting in complete separation of ice
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SHAPE, RADIUS, GRAVITY FIELD

and rock. It is therefore considered unlikely that a rock core
radius larger than about 25% of Callisto’s radius exists at
center of the satellite.

Since ice and rock–metal are mixed together to great de
in Callisto, ice–rock differentiation must be a slow process
the satellite. It cannot involve substantial melting of ice f
then there would be rapid separation of the rock–metal
water components; it must be a sluggish, subsolidus proc
Rock–metal should eventually sink through the ice to the ce
of Callisto but the rate at which this occurs will depend on
size of the rock–metal particles, their density, the viscosity
the ice, and the vigor of convection in the ice. Ice–rock differe
tiation may have cleaned a relatively thin shell near the surf
of Callisto, but the process has not proceeded to comple
Ice–rock differentiation must be an ongoing process.

If a satellite as ice-rich as Callisto is capable of mainta
ing elastic stresses over geologic time, then the assumptio
a hydrostatic figure would be incorrect and Callisto’s mom
of inertia could be smaller than we inferred from C22 using the
equilibrium assumption. The amount of ice–rock separation
report is a lower limit and Callisto could be hiding a more d
ferentiated interior beneath a strong elastic shell.

Incomplete separation of ice and rock in Callisto is consist
with other observations of the satellite. Callisto does not hav
intrinsic magnetic field (Khuranaet al. 1998a), an observation
also consistent with the absence of a metallic core in Calli
Callisto’s surface shows no sign of internal activity (Gree
et al. 2000), consistent with a partially differentiated sta
Callisto is not tidally heated, so this potential heat source co
not have differentiated the satellite. However, Callisto may h
a subsurface liquid water ocean within its ice-dominated ou
layer (Khuranaet al. 1998b, Kivelsonet al. 1999), effectively
decoupling the surface from the slow differentiation beneath
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