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Radio Doppler data generated by the Deep Space Network (DSN)
from five encounters of the Galileo spacecraft with Callisto,
Jupiter’s outermost Galilean satellite, have been used to determine
the mass (GM) and unnormalized quadrupole gravity coefficients in
Callisto’s external gravitational field. The results are GM=
(7179.292 4 0.009) km® 572, J, =(32.740.8) x 107°, C,=(10.2 £
0.3) x 1076,S5, =(—1.140.3) x 107%,C» = (0.0 £0.3) x 1075, and
S,1 =(0.04+1.6) x 10~®. Also, four spacecraft images of Callisto
have been used to determine its mean radius. The result is R=
(2410.3 £1.5) km, with no detectable deviation from sphericity.
Derived parameters are Callisto’s mean density of (1834.4+
3.4) kg m~2 and axial moment of inertia C/MR? = 0.3549 4 0.0042.
While the mean density indicates that Callisto is a mixture of rock
and ice, the moment of inertia is too small for a homogeneous mix-
ture. Accordingly, we present a suite of possible two- and three-layer
interior models that satisfy the given constraints for radius, density,
and moment of inertia. While not unique, these models show that
Callisto cannot be entirely differentiated, and that there must exist
a region of mixed ice and rock-metal, possibly extending to the
center of the satellite.  © 2001 Academic Press

1. INTRODUCTION

viously reported results for Callisto, from orbital revolutions
3,9, and 10 (Andersoet al. 1997, Andersoret al. 1998b), left
some ambiguities about whether the rock and ice within Callist
are separated partially or not at all, the only definite conclusic
being that a complete separation is ruled out.

Here we use additional radio Doppler data from close er
counters with Callisto during a perijove reduction campaign o
orbital revolutions 20 to 23, a campaign carried out to facili
tate close encounters with lo on orbital revolutions 24 and 2
Of the four available GEM Callisto encounters, it is the one o
the 21st orbital revolution (C21) that yields most of the nev
gravity information. Although we have fit Doppler data for five
encounters separately and in combination, it is essentially tl
data on the 10th and 21st orbital revolutions (C10 and C21) th
determine Callisto’s gravity field. In addition, four good image:
of Callisto’s limb, taken with the Galileo imaging system, yield
new results for the satellite’s shape and mean radius. These n
data on shape and gravity field provide important constraints «
possible Callisto interior models.

2. SHAPE AND MEAN RADIUS

The technique of using spacecraft imaging data to dete
mine the shape of a satellite has been discussed before in de

After the exploration of the Jupiter system during the Galile@ermott and Thomas 1988, 1994, Thonmsal. 1998). The

spacecraft’s first 11 orbital revolutions of Jupiter, a follow-oitechniqgue measures limb positions by matching a model
Galileo Europa mission (GEM) focused on the exploration @ bright edge and spread function to the observed brightne
Europa during orbital revolutions 12 to 19. We reported gravigcanned off the limb. The image coordinates are corrected to
and interior results for Europa from four encounters on orbitardinates in kilometers at the target satellite by means of navig
revolutions 4, 6, 11, and 12 (Andersenal. 1998a). Additional tion data for the spacecraft position, and camera focal leng
GEM encounters confirmed that the published Europa gravayd distortion (Davie®t al. 1994). With the inclusion of an

field is correct (Jacobsoet al. 1999). On the other hand, pre-adjustment for camera pointing, the ellipsoidal shape can |
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TABLE I latitude of—0.7°, and a longitude of 288N, where altitude is re-
Fits of Triaxial Ellipsoid Models to Imaging Limb Data ferredto a sphere of radius 2410.3 km, and latitude and longitu

| are defined by international convention (Dava¢al. 1996). The

mage . . . . , Earth—spacecraft line of sight was’@@m the Callisto-centered
numbef NP Equilibriun® Bestfif km/pixel Latitud€é Longitud€ trajector[;/ for C10 and 32for C21. Consequently, our previous
383944100 293 0.096 0.096 9.48 1.91 28.64 concern (Andersomt al. 1998b) that the gravity perturbations
389556200 605 0.169 0.170 6.47 —0.17 65.86  are only measurable perpendicular to the C10 trajectory (cro
420426068 387  0.089 0.090  13.96 —0.47 56.27  track) has been alleviated by measurements of both along-tra

420426101 479 0.117 0117 13.96 —047 5626 and cross-track components for C21. These two components

in the trajectory plane, unlike the third normal component whicl

a Galileo image number from Planetary Data System (PDS) catalog.

b Number of data points on the limb for each image. yields negligible gravity in_formation- o
¢ RMS residual (pixels) with equilibrium fitting model,-a 24104 km, b= For purposes of modeling the gravity field, we use the star
24103 km, c= 24103 km. dard Legendre expansion of the potential function V in spheric:

d RMS residual (pixels) with ellipsoidal fitting model -a24104 km, b= harmonics (Kaula 1966).
24102 km, c= 24103 km.
€ Latitude and west longitude (deg) of the sub-spacecraft point in Callisto- |:

fixed IAU coordinate system (Davies al. 1996). V(r ® A) . GM
’ ’ - r

[o¢] n R n
1+ <—> ChmCOsSma
determined by matching the limb coordinates to those predicted
for triaxial ellipsoids. We solve for the shape in two ways. First, + SamSin MA)Pym(sin ¢,)} , (1)
we determine the best ellipsoid with no constraints on shape,
then we determine a shape with the relative axial dimensions
constrained by equilibrium theory (Dermott and Thomas 1988here M is the satellite’s mass, and G is the gravitational con:
1994). Because only a few Galileo images of Callisto coveré@nt; G= (6.67259+ 0.00085)x 10 ** m® kg~* s72 (Cohen
a large fraction of the limb, the accuracy of both solutions fénd Taylor 1999). The spherical coordinatesy; 1) are referred
Callisto’s shape is limited. to the center of mass, with r the radial distangehe latitude,
The results offitting two ellipsoidal shapes to the imaging dagdd? the longitude on the equator. Callisto’s mean radius R fror
are given in Table . Both solutions produce a nearly sphericagction 2 is 2413+ 1.5 km; Ry is the associated Legendre
shape, and in fact any difference between them is not statisticaiglynomial of degree n and order m; ang,Cand S, are the
significant. Both fits, with RMS residuals well under 0.2 pixelscorresponding harmonic coefficients. We limit the Callisto gra
indicate little global departure from sphericity. The uncertaintyity parameters to the monopole GM and to the five quadrupo
in the relative measures (such as a—c) can be evaluated formg@gfficients d(—Cz), Ca1, S1, Cz2, and $,. These coefficients,
by a Chi-square method (Dermott and Thomas 1988, 1994)’ Q{I}@ng with other parameters in the flttlng mOdel, are determine
because this method ignores the systematic error, the resulffigin the data by weighted least squares (Moyer 1971, Tapl
formal errors are not realistic. Instead, we estimate the realisk@/3, Anderson 1974, Lawson and Hanson 1974). All othe
errors by noting that the range of solutions for a—c from indgravity harmonics are set to zero by default. Of course all othe
vidual profiles is 0.6 km and that the systematic error for tHgarmonics are not exactly zero, but the data can be fit to tt
differences in the axes should be no more than twice this rang§gise level with just GM and the quadrupole moments, henc
still less than 0.2 pixels. However, because of the use of sumni@re is no point in including more coefficients. More coeffi-
pixel images, the absolute calibration of the limb location ca#ents would just make the solution ill conditioned and woulc
be even less accurate (Thoneasl. 1998). Therefore, we adopt require the inclusion of a priori information on the gravity field
a realistic uncertainty in the mean radius of 1.5 km, 25% largeF. alternatively, the use of singular value decomposition (SVC
than twice the range of all solutions for the difference in axe#-awson and Hanson 1974). Basically, the flyby distances a
The final result is a mean radiussR24103 km = 1.5 km, with Not close enough for a detection of gravity moments beyond tt
no detectable deviation from sphericity. All three principal axeg‘adrupole terms.

are equal to R with a realistic error (random and systematic) ofAS in previous analyses (Anderset al. 1998a, Anderson
+1.5 km. et al. 1998b), the gravity coefficients are determined by anz

lyzing each encounter separately and also in combination. £

3. GRAVITY FIELD might be expected, there is not enough information from |

single encounter to determine all five quadrupole coefficient

The geometry of the Callisto encounters used in the graamd although the separate determinations are useful for runni

ity analysis has been discussed before (Andeetal. 1998b, consistency checks, they yield little substantive informatior

Jacobsoret al. 1999). For the two best gravity encounters, C1Therefore, we present here just the results from our best cor

occurred at an altitude of 528 km, a latitude 34 and a longi- bined fit (JUP158), with details of the methodology presente
tude of 787° W, while C21 occurred at an altitude of 1041 km, &lsewhere (Andersoet al. 1998b, Jacobsoat al. 1999). The
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Callisto encounters included in the fit are C3, C9, C10, C20, addl) m, which is consistent with the measured shape frot
C21. The fit JUP158 yields GM: 71792924 0.009 kn? s72,  Section 2, where a ¢ = (0.1 & 1.2) km, including both ran-

and the quadrupole coefficients are=J(32.7 4+ 0.8) x 107, dom and systematic error. We ignore the small differences b
Co = (1024+0.3) x 106,S,, = (—1.1+0.3) x 10°%,C,1 = tweenthe three axes, and hence the three principal moments, .
(0.04+0.3) x 106, and S, = (0.0 + 1.6) x 10°6. The correla- use the normalized axial moment of inertia and the mean dens
tion coefficient betweernp,land G is 0.997, a reflection of the to interpret results. Our determination gf ields a value for

near equatorial nature of all the encounters. The quoted errarthat is just barely consistent at the one sigma level with ot

represent our best estimates of the realistic errors. adopted value from £. If there were a Callisto encounter at
high latitude, this would be of concern, but with only equatoria
4. INTERPRETATION flybys, it is not statistically significant.

The inferred value of ZMR? is significantly less than 0.4, the
As pointed out previously (Anderscet al. 1997), it is un- yajue of G’MR? for a sphere of constant density, and is also les
likely that the rigidity of materials that make up Callisto couldhan the value of 0.38 for an undifferentiated model of Callist
hide a strongly differentiated satellite. Therefore, we emp'QMcluding ice phase changes (McKinnon 1998). There must |
equilibrium theory (Hubbard and Anderson 1978, Mueller angh, increase in rock—-metal fraction with depth inside Callisto, ar
Mckinnon 1988, Zharkoet al. 1985, Schuberet al. 1994) in - consequently Callisto must be at least partially differentiated.
all the interpretations of results, and we takg @nd the mean  consistent with the few constraints we have on Callisto’s ir
density as the sole gravitational constraints on interior modejgynal structure (mean density and moment of inertia), we e
The values of GM and R inferred from the Galileo Doppler angjore simple two- and three-layer models of its interior density
imaging data yield a mean density of 1884 3.4 kg > for  \ne use a forward modeling approach and solve Clairaut’s equ
Callisto, where the density error is dominated by #&5 km  tion for the distortion of a satellite with a given internal structure
error in the mean radius R. Even the simple parameterizations adopted here are undercc
Under the assumption that Callisto’s spherical harmonic dgained, so we present families of possible hydrostatic intern

gree 2 gravitational field is due to the equilibrium tidal and rotasyctures consistent with the observed mean density and C
tional ellipsoidal distortion of a satellite in synchronous rotation The two free parameters of the two-layer models shown |
with its orbital period, the gravity coefficientg’is related 10 Fig, 1 are the densities of the layers. The interior density rang
the rotational parametey by from the mean density of Callisto to the density of iron. The oute
shell density ranges from the density of ice to less than the me
Sy , (2) density of Callisto. The thin solid lines in the figure give the
4 thickness of the outer layer in kilometers. The thick solid curv
is the locus of all two-layer models with the observed value c
C,. The thick dashed lines show the limits on the models bast
onthetlo values of G,. Models which have the observed value
of C,, fall between two end members: a relatively pure ice oute
shell about 300 km thick overlying a mixed ice and rock—mete

Cop =

whereg, = ©v?’R®/GM is a measure of the forcing for rotational
flattening of the satellite. The rotational angular velocitys
equal to Callisto’s orbital angular velocity of 21.5711 degday
(Greenberg 1982), amgl is 37.0344+ 0.069 in units 10°. The
dimensionless response coefficientlepends on the distribu-
tion of density with depth inside the satellite £ 0.5 for cons-
tant density). For our adopted value ofxCx is 0.3714+ 0.011. 1.7
From equilibrium theory and the value of, it follows that
Callisto’s axial moment of inertia C, normalized to MRs
C/MR? = 0.3549+ 0.0042, as computed from the approximate
Radau relationship (Hubbard and Anderson 1978),

c 2 2(4—3a\"?
—— =—1-= . 3
MR? 3 5\ 1+ 3
Similarly, the differences in Callisto’s principal axes<cb <
a) can be computed from (Hubbard and Anderson 1978)

Outer shell density (102 kg m-3)
P

0.9

a—c 20 25 30 35 40 45 50 55 60 65 7.0 75 80
< = 20 (1 + 3a), 4) interior density (102 kg m-)

. . . FIG.1. Two-layer models of Callisto’s interior density consistent with the
where cisthe polar radius and{bc)/(a - C) IS exaCtIy 1/4.The observed mass and moment of inertia. Bold curves give the family of models f

difference in axes as inferred from the gravity field is @ = the nominal (solid) and one-sigma (dashed) valuesefThin lines are labeled
(3772+£59)m,b—c=(943+ 1.5)m,anda— b = (2829+ by the thickness of the outer shell in km.
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FIG.2. Three-layer models of Callisto’s interior density consistent with the observed mass and moment of inertia for core densities equal to (léfilto rigt
lo (3560 kg nT3), an Fe—FeS eutectic (5150 kg &), and pure iron (8000 kg i#). The surface in three-dimensional parameter space is the family of solutio
that fit the observed constraints. The color of the surface gives the thickness of the outer layer as indicated by the colorbar.

interior of density near 2300 kg ™, and a thick (greater than and dotted lines represent the one-sigma variations. The cun
about 1000 km) ice and rock—metal outer shell with a densi@ye labeled according to the density of the core. These mod
near 1600 kg m? overlying a rock—metal core. are bracketed by the end-member two-layer models of Fig. 1.
The two-layer models are a subset{B/ Rcaiisto = 0) of the  between the extremes are several similar families of models wi
three-layer models shown in Fig. 2 for core densities corresporiaiddie layer densities between 1600 and 2300 kd.in every
ing to the mean density of lo (3560 kgH), the density of Fe— case, a significant portion of Callisto has a density that can on
FeS (5150 kg m®), and the density of Fe (8000 kg1f). Models  be explained by a mixture of ice and rock or rock—metal. Thus
that satisfy the mean density and moment of inertia constraigllisto must only be partially differentiated, with the ice and
are defined by the surfaces in the three-dimensional paramé@sik incompletely separated. The rock—metal fraction in Callist
space consisting of normalized core radius, middle layer densiyst increase with depth, but gravity data are unable to constre
and outer layer density. While a wide range of internal densitipe exact nature of the increase (either continuous or step-wis
models is consistent with the observations of Callisto’s medihatever the distribution of rock—-metal fraction with depth, it
density and moment of inertia, it is possible to reach a numbércertain that ice and rock—metal are mixed together to dept
of robust conclusions about Callisto’s interior. of at least about 1000 km and even, perhaps, to the center of t
Figure 3 shows the families of three-layer models fosatellite.
which the outer shell has a density appropriate for clean iceBased on arguments that subsolidus ice convection is nect
(1000 kg n73). Solid lines are for the nominal value of,$C sary to remove the radiogenically generated heat from the roc
in Callisto’s interior, and that such thermal convection woulc
be inhibited by negative compositional buoyancy if rock—meta

24 ' : * : * fraction increased gradually with depth, we prefer either a twc
& Outer Shell Density = 1000 kg m2 . . . .
E layer model in which a large ice-rock—metal core of essentiall
2221 o - uniform composition is surrounded by a relatively cleanice she
-‘g 3 up to about 350 km thick, or a similar three-layer model whict
[0 . .. .
a20q12 i also has an inner rock—-metal core. However, it is difficult tc
2 8 reconcile a metallic core with the requirement that ice and roc
21812 - remain mixed throughout large portions of the interior. Seps
é N\ ration of rock and metal requires temperatures far in exce:
1.6 1 . . __No Clean-lce Outer Shell - of the melting point of ice, so formation of a metallic core in
0.0 0.1 02 03 04 0.5 06 Callisto should also imply complete separation of ice and rocl
Roore/RCalllsto

Formation of a rock core is less problematic, although even |
; . 0 N .
FIG.3. Three-layer models with outer shell density1000 kg 3. The this case, the consolidation of a large (40% Callisto’s rad|u_s

curves give the family of models for the nominal (solid) and one-sigma (dottet@CK core could release enough energy to melt a large fractic

values of G». The lines are labeled by the density of the core. (50%) of Callisto’s ice, resulting in complete separation of ice
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and rock. It is therefore considered unlikely that a rock core @fderson, J. D., G. Schubert, R. A. Jacobson, E. L. Lau, W. B. Moore, ar
radius larger than about 25% of Callisto’s radius exists at thew.L. Sjogren 1998b. Distribution of rock, metals, and ices in CalliStience
center of the satellite. 280, 1573-1576. _

Since ice and rock-metal are mixed together to great deftf'e™ E- R- and B. N. Taylor 1999. The fundamental physical consrys.
. : . . o . Today52, BG5-BG9.
in Callisto, ice—rock differentiation must be a slow process in _

. . . . . Davies, M. E., T. R. Colvin, M. J. S. Belton, J. Veverka, and P. Thomas 1994. Tt

the satellite. It cannot involve substantial melting of ice f

. ; or direction of the north pole and the control network of asteroid 951 Gaspr
then there would be rapid separation of the rock—metal anggarys107 18-22.

water components; it must be a sluggish, subsolidus processjies, M. E., V. K. Abalakin, M. Bursa, J. H. Lieske, B. Morando, D. Morrison,

Rock—metal should eventually sink through the ice to the centep.K. Seidelmann, A. T. Sinclair, B. Yallop, and Y. S. Tjuflin 1996. Report of the

of Callisto but the rate at which this occurs will depend on the IAU/IAG/COSPAR working group on cartographic coordinates and rotationa

size of the rock—metal particles, their density, the viscosity 0]celements of the planets and satellites: 190dles. Mech53, 127-148.

the ice, and the vigor of convection in the ice. Ice—rock differefermott. S. F., and P. C. Thomas 1988. The shape and internal structure
Mimas.Icarus 73, 25-65.

tiation may have cleaned a relatively thin shell near the surface I
Dermott, S. F., and P. C. Thomas 1994. The determination of the mass &

of CaIIIStO’_ but th_e process has not pro_ceeded to CC'mpletlonr‘nean density of Enceladus from its observed shimaeus 109, 241-257.
Ice—rock differentiation must be an ongoing process. 5 cperg. R. 1982, Orbital evolution of the Galilean satelliteSarellites of
If a satellite as ice-rich as Callisto is capable of maintain- yypiter(D. Morrison, Ed.), pp. 65-92. Univ. of Arizona Press, Tucson.
ing elastic stresses over geologic time, then the assumptions@feley, R., J. E. Klemaszewski, and R. Wagner 2000. Galileo views of tt
a hydrostatic figure would be incorrect and Callisto’s momentgeology of CallistoPlanet. Space Soi8, 829-853.
of inertia could be smaller than we inferred from,@ising the Hubbard, W. B., and J. D. Anderson 1978. Possible flyby measurements
equilibrium assumption. The amount of ice—rock separation weSalilean satellite interior structurkzarus33, 336-341.
report is a lower limit and Callisto could be hiding a more difJacobson, R. A., R. J. Haw, T. P. McElrath, and P. G. Antreasian. A comprehe
ferentiated interior beneath a strong elastic shell. sive orbit reconstruction for the Galilep Prime Mi§sion in the J2000 sys_ten
Incomplete separation ofice and rock in Callisto is COnSiStentPresenteq at AA$/AIAA Astrodynamics Specialist Conference, America
. . . ) Astronautical Society, Girdwood, Alaska, 1999.
ywth ot_her obser\_/atl_ons of the satellite. Callisto does not hgve RLiia, W. M. 1966Theory of Satellite GeodesBiaisdell, Waltham, MA.
intrinsic magnenc_fleld (Khuranat aI.1998a),_an obsgrvatlo_n Khurana, K. K., M. G. Kivelson, C. T. Russell, R. J. Walker, and D. J.
also consistent with the absence of a metallic core in Callistogouthwood 1998a. Absence of an intrinsic magnetic field on Call&ture
Callisto’s surface shows no sign of internal activity (Greeley 387, 262-264.
et al. 2000), consistent with a partially differentiated statexhurana, K. K., M. G. Kivelson, D. J. Stevenson, G. Schubert, C. T. Russel
Callisto is not tidally heated, so this potential heat source coulcR. J. Walker, S. Joy, and C. Polauskey 1998b. Induced magnetic fields
not have differentiated the satellite. However, Callisto may hav_eevidence for subsurface oceans in Europa and Calligture395, 777-780.
a subsurface liquid water ocean within its ice-dominated out&ye!son. M. G., K. K. Khurana, D. J. Stevenson, L. Bennett, S. Joy, C
layer (Khuraneet al. 1998b, Kivelsoret al. 1999), effectively T. Russell, R. J. Walker, C. Zimmer, and C. Polauskey 1999. Europ

. : e and Callisto: Induced or intrinsic fields in a periodically varying plasma
decoupling the surface from the slow differentiation beneath. environmentJ. Geophys. Re&04, 4609-4646.

Lawson, C. L. and R. J. Hanson 1978olving Least Squares Problems.
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