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ABSTRACT
Minor bodies trapped in 1:1 co-orbital resonances with a host planet could be relevant to explain
the origin of captured satellites. Among the giant planets, Uranus has one of the smallest known
populations of co-orbitals, three objects, and all of them are short-lived. Asteroid 2015 DB216

has an orbital period that matches well that of Uranus, and here we investigate its dynamical
state. Direct N-body calculations are used to assess the current status of this object, reconstruct
its immediate dynamical past, and explore its future orbital evolution. A covariance matrix-
based Monte Carlo scheme is presented and applied to study its short-term stability. We find
that 2015 DB216 is trapped in a temporary co-orbital resonance with Uranus, the fourth known
minor body to do so. A detailed analysis of its dynamical evolution shows that it is an unstable
but recurring co-orbital companion to Uranus. It currently follows an asymmetric horseshoe
trajectory that will last for at least 10 kyr, but it may remain inside Uranus’ co-orbital zone
for millions of years. As in the case of other transient Uranian co-orbitals, complex multibody
ephemeral mean motion resonances trigger the switching between the various resonant co-
orbital states. The new Uranian co-orbital exhibits a secular behaviour markedly different from
that of the other known Uranian co-orbitals because of its higher inclination, nearly 38◦. Given
its rather unusual discovery circumstances, the presence of 2015 DB216 hints at the existence
of a relatively large population of objects moving in similar orbits.

Key words: methods: numerical – methods: statistical – celestial mechanics – minor planets,
asteroids: individual: 2015 DB216 – planets and satellites: individual: Uranus.

1 IN T RO D U C T I O N

For over a century, co-orbitals – or minor bodies trapped in a 1:1
mean motion resonance with a host planet – have been regarded as
mere interesting dynamical curiosities (Jackson 1913; Henon 1969;
Namouni 1999). This view is now changing considerably; in fact,
the heliocentric 1:1 co-orbital resonance could be an efficient mech-
anism for capture of satellites by a planet and therefore explain the
origin of some irregular moons (Kortenkamp 2005). This theoretical
possibility – that of being a feasible dynamical pathway to capture
satellites, at least temporarily – was dramatically vindicated when
a co-orbital of the Earth, 2006 RH120, remained as natural satellite
of our planet for about a year starting in 2006 June (Kwiatkowski
et al. 2009; Granvik, Vaubaillon & Jedicke 2012).

Uranus has one of the smallest known populations of co-orbitals
and all of them are relatively short-lived (de la Fuente Marcos & de
la Fuente Marcos 2014). So far, Uranus had only three known co-
orbitals: 83982 Crantor (2002 GO9) (Gallardo 2006; de la Fuente
Marcos & de la Fuente Marcos 2013), 2010 EU65 (de la Fuente Mar-
cos & de la Fuente Marcos 2013), and 2011 QF99 (Alexandersen
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et al. 2013; de la Fuente Marcos & de la Fuente Marcos 2014). Due
to its present short data-arc (85 d), 2010 EU65 is better described
as a candidate. Asteroids Crantor and 2010 EU65 follow horse-
shoe orbits, and 2011 QF99 is an L4 Trojan. Consistently, Uranus
has also a small population of irregular satellites, significantly
smaller than that of Jupiter or Saturn (Grav et al. 2003; Sheppard,
Jewitt & Kleyna 2005). Most Uranian irregular satellites are ret-
rograde and their large spread in semimajor axis suggest that they
formed independently (Nesvorný et al. 2003); orbits with inclina-
tions in the range (80◦, 100◦) are unstable due to the Kozai resonance
(Kozai 1962). For the particular case of Uranus’ Trojans, Dvorak,
Bazsó & Zhou (2010) have also found that the stability depends
on the orbital inclination and only the inclination intervals (0◦, 7◦),
(9◦, 13◦), (31◦, 36◦), and (38◦, 50◦) seem to be stable. Asteroid
2011 QF99 appears to inhabit one of these stable islands at an incli-
nation of nearly 11◦ (de la Fuente Marcos & de la Fuente Marcos
2014). The stability of Uranian Trojans had been previously studied
by Marzari, Tricarico & Scholl (2003), and by Nesvorný & Dones
(2002) and Holman & Wisdom (1993) before them.

Here, we present a recently discovered object, 2015 DB216, that
is also trapped in a 1:1 mean motion resonance with Uranus. This
minor body exhibits some dynamical features that separate it from
the previously known Uranian co-orbitals. This paper is organized
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A recurring co-orbital to Uranus 1289

Table 1. Heliocentric Keplerian orbital elements of 2015 DB216 used
in this research. The orbit is based on 28 observations spanning
a data-arc of 4200 d or 11.50 yr, from 2003 October 21 to 2015
April 23. Values include the 1σ uncertainty. The orbit is computed
at epoch JD 245 7000.5 that corresponds to 0:00 UT on 2014 December
9 (J2000.0 ecliptic and equinox) and it is t = 0 in the figures. Source:
JPL Small-Body Database.

Semimajor axis, a (au) = 19.204 ± 0.005
Eccentricity, e = 0.323 95 ± 0.000 13

Inclination, i (◦) = 37.7173 ± 0.0003
Longitude of the ascending node, � (◦) = 6.2679 ± 0.0003

Argument of perihelion, ω (◦) = 237.75 ± 0.03
Mean anomaly, M (◦) = 302.52 ± 0.04

Perihelion, q (au) = 12.9832 ± 0.0013
Aphelion, Q (au) = 25.426 ± 0.007

Absolute magnitude, H (mag) = 8.3 ± 0.4

as follows. In Section 2, we briefly discuss both the data and the
numerical model used in our calculations. The topic of generating
control orbits compatible with the available observations and its
implications is considered in Section 3. The current status of 2015
DB216 is studied in Section 4, where its dynamical past and future
orbital evolution are also investigated. Section 5 discusses our re-
sults and their possible significance. The stability of the co-orbital
realm located in the neighbourhood of 2015 DB216 is tentatively
explored in Section 6. A summary of our conclusions is given in
Section 7.

2 DATA A N D M E T H O D O L O G Y

Asteroid 2015 DB216 was discovered on 2015 February 27 at Mt
Lemmon Survey. With a value of the semimajor axis a = 19.20 au,
this Centaur moves in an eccentric, e = 0.32, and highly inclined
path, i = 37.◦72. With such an orbit, close encounters are only pos-
sible with Uranus as its perihelion is well beyond Saturn’s aphelion
and its aphelion far from Neptune’s perihelion. It is a relatively
large object with H = 8.3 mag which translates into a diameter in
the range 46–145 km for an assumed albedo of 0.40–0.04. Its period
of revolution around the Sun, approximately 84.16 yr at present, is
very close to that of Uranus which is suggestive of an object that
moves co-orbital with the giant planet. Its current orbit is statisti-
cally robust because six precovery images acquired by the Sloan
Digital Sky Survey (SDSS) at Apache Point late in 2003 have been
found. The heliocentric Keplerian osculating orbital elements and
uncertainties in Table 1 are based on 28 observations for a data-arc
span of 4200 d and they have been obtained from the Jet Propulsion
Laboratory (JPL) Small-Body Database.1

In order to assess the dynamical status of 2015 DB216, we use
the Hermite integration scheme described by Makino (1991) and
implemented by Aarseth (2003). The standard version of this direct
N-body code is publicly available from the IoA website.2 Our phys-
ical model includes the perturbations by the eight major planets,
the Moon, the barycentre of the Pluto–Charon system, and the three
largest asteroids; additional details can be found in de la Fuente
Marcos & de la Fuente Marcos (2012). To compute accurate initial
positions and velocities we used the heliocentric ecliptic Keplerian

1 http://ssd.jpl.nasa.gov/sbdb.cgi
2 http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm

elements provided by the JPL On-line Solar System Data Service3

(Giorgini et al. 1996) and initial positions and velocities based on
the DE405 planetary orbital ephemerides (Standish 1998) referred
to the barycentre of the Solar system. Besides the orbital calcula-
tions completed using the nominal elements in Table 1, we have
performed 50 control simulations with sets of orbital elements ob-
tained from the nominal ones as described in the following section,
all of them for 0.5 Myr forward and backwards in time. Two more
sets of 100 control orbits each have been integrated for just 5 kyr into
the past and the future to better characterize its short-term stability.

3 G E N E R AT I N G C O N T RO L O R B I T S
W I T H M O N T E C A R L O A N D T H E
C OVA R I A N C E M AT R I X

For a given minor body, the orbital elements are a coordinate in six-
dimensional space (assuming as we do that non-gravitational forces
can be neglected), which represents the location where samples of
control orbits are most likely to be generated. This is analogous
to the peak of the Gaussian curve for a typical one-dimensional or
univariate normal distribution. The multivariate normal distribution
is a generalization of the one-dimensional normal distribution to
higher dimensions. Instead of being specified by its mean value and
variance, such a distribution is characterized by its mean (a vector
with the mean of the multidimensional distribution) and covariance
matrix, which defines a hyperellipsoid in multidimensional space.
The values of the elements of the covariance matrix indicate the
level to which two given variables vary together. For a particular
object, both mean and covariance matrix are computed from the
observations.

When studying the stability of the orbital solution of a certain
minor planet, we can compute the orbital elements of the con-
trol orbits varying them randomly, within the ranges defined by
their mean values and standard deviations. For example, a new
value of the orbital eccentricity can be found using the expression
ec = e + σ e ri, where ec is the eccentricity of the control orbit, e is
the mean value of the eccentricity (nominal orbit), σ e is the standard
deviation of e (nominal orbit), and ri is a (pseudo) random number
with normal distribution in the range −1 to 1. In statistical terms,
the univariate Gaussian distribution results from adding a standard
Gaussian variate with mean zero and variance one multiplied by the
standard deviation, to the mean value. This is equivalent to consid-
ering a number of different virtual minor planets moving in similar
orbits, not a sample of control orbits incarnated from a set of ob-
servations obtained for a single minor planet. If the control orbits
are meant to be compatible with actual observations, we have to
consider how the elements affect each other using the covariance
matrix or e.g. following the procedure described in Sitarski (1998,
1999, 2006).

The methodology used in this paper is an implementation of
the classical Monte Carlo using the Covariance Matrix (MCCM;
Bordovitsyna, Avdyushev & Chernitsov 2001; Avdyushev &
Banschikova 2007) approach, i.e. a Monte Carlo process creates
control orbits with initial parameters from the nominal orbit adding
random noise on each initial orbital element making use of the co-
variance matrix. The MCCM approach considers that the estimated
parameters are Gaussian random variables with mean values those
of the nominal orbit and covariance matrix obtained via the least-
squares method applied to the available observations. Assuming a

3 http://ssd.jpl.nasa.gov/?planet_pos
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covariance matrix as computed by the JPL Solar System Dynamics
Group, Horizons On-Line Ephemeris System, the vector including
the mean values of the orbital parameters at a given epoch t0 is of the
form v = (e, q, τ, �, ω, i); the perihelion is given by the expres-
sion q = a (1 − e). If C is the covariance matrix at the same epoch
associated with the nominal orbital solution that is symmetric and
positive-semidefinite, then C = A AT, where A is a lower triangular
matrix with real and positive diagonal elements, AT is the transpose
of A. In the particular case studied here, these matrices are 6 × 6.
If the elements of C are written as cij and those of A as aij, where
those are the entries in the ith row and jth column, they are related
by the following expressions:

a11 = √
c11

a21 = c12/a11

a31 = c13/a11

a41 = c14/a11

a51 = c15/a11

a61 = c16/a11

a22 =
√

c22 − a2
21

a32 = (c23 − a21 a31)/a22

a42 = (c24 − a21 a41)/a22

a52 = (c25 − a21 a51)/a22

a62 = (c26 − a21 a61)/a22

a33 =
√

c33 − a2
31 − a2

32

a43 = (c34 − a31 a41 − a32 a42)/a33

a53 = (c35 − a31 a51 − a32 a52)/a33

a63 = (c36 − a31 a61 − a32 a62)/a33

a44 =
√

c44 − a2
41 − a2

42 − a2
43

a54 = (c45 − a41 a51 − a42 a52 − a43 a53)/a44

a64 = (c46 − a41 a61 − a42 a62 − a43 a63)/a44

a55 =
√

c55 − a2
51 − a2

52 − a2
53 − a2

54

a65 = (c56 − a51 a61 − a52 a62 − a53 a63 − a54 a64)/a55

a66 =
√

c66 − a2
61 − a2

62 − a2
63 − a2

64 − a2
65 . (1)

If r is a vector made of univariate Gaussian random numbers (com-
ponents ri with i = 1, 6), the required multivariate Gaussian random
samples – i.e. the sets of initial orbital elements of the control orbits
– are given by the expressions (assuming the structure provided by
the JPL Horizons On-Line Ephemeris System), vc = v + A r:

ec = e + a11 r1

qc = q + a22 r2 + a21 r1

τc = τ + a33 r3 + a32 r2 + a31 r1

�c = � + a44 r4 + a43 r3 + a42 r2 + a41 r1

ωc = ω + a55 r5 + a54 r4 + a53 r3 + a52 r2 + a51 r1

ic = i + a66 r6 + a65 r5 + a64 r4 + a63 r3 + a62 r2 + a61 r1 . (2)

Figure 1. Time evolution of the orbital elements a, e, i, �, and ω of 2015
DB216. The thick black curve shows the average evolution of 100 control
orbits, the thin red curves display the ranges in the values of the parameters
at the given time. Control orbits depicted in the left-hand panels have been
computed as described in the text, using the covariance matrix (equations 2).
Those displayed in the right-hand panels have been computed without taking
into account the covariance matrix (equations 3).

In contrast, the equivalent classical – but statistically wrong – ex-
pressions commonly used to generate control orbits are given by

ec = e + σe r1

qc = q + σq r2

τc = τ + στ r3

�c = � + σ� r4

ωc = ω + σω r5

ic = i + σi r6 . (3)

A comparison between the results of the evolution of a sample of
control orbits generated using equations (2) and (3) for the particular
case of 2015 DB216 appears in Fig. 1, left-hand and right-hand
panels, respectively. In our calculations, the Box–Muller method
(Press et al. 2007) was used to generate random numbers with a
normal distribution. It is obvious that, at least for this particular
object, the difference is not very significant. However and for very
precise orbits, the outcomes from these two approaches could be
very different (see e.g. fig. 5 in Sitarski 1998); creating control
orbits by randomly varying the nominal orbital elements in range
of their mean errors (equations 3) is not recommended in that case.

4 A S T E RO I D 2 0 1 5 D B 216:
DY NA M I C A L E VO L U T I O N

In order to assess the dynamical status of 2015 DB216, we focus
on the study of the librational behaviour of the relative mean lon-
gitude λr = λ − λU, where λ and λU are the mean longitudes of
the object and Uranus, respectively; λ = M + � + ω, where M
is the mean anomaly, � is the longitude of the ascending node,
and ω is the argument of perihelion. If λr oscillates around 0◦, the
object is considered a quasi-satellite; Trojan bodies are character-
ized by λr librating around +60◦ (L4 Trojan) or −60◦ (or 300◦,
L5 Trojan); finally, an object whose λr oscillates with amplitude
>180◦ follows a horseshoe orbit (see e.g. Murray & Dermott 1999).
Quasi-satellites are not true gravitationally bound satellites but
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A recurring co-orbital to Uranus 1291

Figure 2. The motion of 2015 DB216 during the time interval (0, 10) kyr
projected on to the ecliptic plane in a coordinate system rotating with Uranus
(red curve, left-hand panel). The orbit and the position of Uranus are also
plotted (blue curve). In this frame of reference, and as a result of its non-
negligible eccentricity, Uranus describes a small ellipse (black curve). The
associated values of the resonant angle, λr, are also displayed (right-hand
panel).

appear to orbit the host planet like a retrograde satellite. If λr can
take any value (circulates), we speak of passing orbits.

Our N-body integrations show that 2015 DB216 is currently a co-
orbital companion to Uranus and moves in an asymmetric horseshoe
orbit with a period of about 11 kyr (see Fig. 2, right-hand panel); in
this case, asymmetric means that the resonant angle, λr, goes beyond
0◦ reaching an offset of libration around −40◦ at nearly 9 kyr. The
left-hand panel in Fig. 2 depicts the trajectory of 2015 DB216 viewed
in a frame of reference corotating with Uranus. Fig. 3 displays the
dynamical evolution of various parameters for three representative
orbits: the nominal one (central panels) and those of two additional
orbits which are most different from the previous one, and have been
obtained adding (+) or subtracting (−) six times the uncertainty
from the orbital parameters (the six elements) in Table 1. All the
control orbits show consistent behaviour within a few thousand
years of t = 0 (see Fig. 1). Its e-folding time, or characteristic time-
scale on which two arbitrarily close orbits diverge exponentially, is
a few thousand years both in the past and the future. The evolution
of the control orbits exhibits very similar behaviour of all the orbital
elements within the time frame (−3, 3) kyr (see Fig. 1).

Asteroid 2015 DB216 currently occupies (see Fig. 3, E panels)
a band of instability between the two stable islands in inclination,
(31◦, 36◦) and (38◦, 50◦), described in Dvorak et al. (2010) for Ura-
nian Trojans. However, the figure shows that the inclination of this
asteroid is high enough to avoid close encounters with Uranus when
the relative mean longitude approaches zero, i.e. close encounters
with Uranus (or any other body) are not responsible for the acti-
vation and deactivation of the co-orbital behaviour of this object.
Very few close encounters with Uranus have been observed during
the simulated time (examples appear in the A-left-hand and centre
panels of Fig. 3). However, multiple and repetitive short co-orbital
episodes of the Trojan, quasi-satellite and horseshoe type are ob-
served in Fig. 3. Recurrent co-orbital episodes in which the relative
mean longitude librates for several cycles and then circulates for a
few more cycles before restarting libration once again, are the sign-
post of a type of dynamical behaviour known as resonance angle
nodding, see e.g. Ketchum, Adams & Bloch (2013); nodding often
occurs when a small body is in an external (near) mean motion
resonance with a larger planet. In our case, the situation is more
complicated because we have multiple distant perturbers.

Transitions in and out or between the various co-orbital states
are not triggered by encounters but result from complex multibody
ephemeral mean motion resonances as described in de la Fuente

Marcos & de la Fuente Marcos (2014). As other Uranian co-orbitals
do, 2015 DB216 moves in near resonance with the other three giant
planets: 1:7 with Jupiter, 7:20 with Saturn, and 2:1 with Neptune.
Fig. 4 shows the behaviour of the resonant arguments σ J = 7λ −
λJ − 6� , σ S = 20λ − 7λS − 13� , and σ N = λ − 2λN + � ,
where λJ is the mean longitude of Jupiter, λS is the mean longitude
of Saturn, λN is the mean longitude of Neptune, and � = � + ω

is the longitude of the perihelion of 2015 DB216. The plot (similar
to figs 6 and 7 in de la Fuente Marcos & de la Fuente Marcos
2014) clearly indicates that transitions are quickly triggered when
multiple mean motion resonances work in unison. In Fig. 4, an
originally passing orbit becomes a horseshoe path after σ J and σ N

stop circulating; prior to the ejection from the horseshoe-like path,
the same scenario is observed. The dynamical role of three-body
mean motion resonances has been recently explored by Gallardo
(2014). Marzari et al. (2003) already pointed out that three-body
resonances could be a source of instability for Uranian co-orbitals,
in particular Trojans.

It may be argued that it is unclear from Fig. 4 that overlap-
ping mean motion resonances are responsible for the transitions
between co-orbital states or the activation/deactivation of the ob-
served librational dynamics. On strictly theoretical grounds, this is
to be expected as the orbital architecture of the giant planets is not
random. Ito & Tanikawa (2002) and Tanikawa & Ito (2007) have
pointed out that Jupiter affects the motions of Uranus and Neptune
without the connection of Saturn and that secular perturbations may
be nullified in such context. To explore this issue further, we have
recomputed the short-term orbital evolution of the nominal orbit
of 2015 DB216 using increasingly complex physical models. Inte-
grating the three-body problem – Sun, Uranus, and 2015 DB216

– we observe asymmetric horseshoe evolution with no transitions.
Computing the evolution of the four-body problem – Sun, Jupiter,
Uranus, and 2015 DB216 – a transition from asymmetric horseshoe
to L4 Trojan at about 15 kyr is recorded. The alternative four-body
problem – Sun, Saturn, Uranus, and 2015 DB216 – results in an
L4 Trojan path with no transitions. A similar result is observed
for the case Sun, Uranus, Neptune, and 2015 DB216. The six-body
problem – Sun, Jupiter, Saturn, Uranus, Neptune, and 2015 DB216

– results in an asymmetric horseshoe transitioning to a passing
orbit, but somewhat earlier than observed in Fig. 4. It appears
obvious that in order to turn the asymmetric horseshoe libration
into a passing orbit, superposition of mean motion resonances is
required.

A more systematic exploration of the various five-, six-, and
higher-multiplicity-body problems shows that the details of the tran-
sitions are strongly dependent on the number of distant perturbers
included in the simulations. The dynamical evolution of these ob-
jects is unusually sensitive to the physical model used to perform
the calculations. Removing the three asteroids and the Pluto–Charon
system does not have a major observable impact on the outcome
of the simulations both in terms of the timing and the types of the
observed transitions (the evolution displayed in Fig. 4 remains very
nearly the same). However, stripping planets from the model – even
Mercury or Mars – has immediate effects on the orbital evolution of
these recurring Uranian co-orbitals. For example, removing Mer-
cury from the calculations triggers a transition from asymmetric
horseshoe to L4 Trojan at about 15 kyr and back to asymmetric
horseshoe a few kyr later. This analysis indicates that any numeri-
cal study of these objects that is not using the full set of planets may
arrive to unrealistic conclusions regarding the stability and dynam-
ical evolution of these objects. This is consistent with the analysis
in Tanikawa & Ito (2007). Published works like those of Marzari
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Figure 3. Comparative dynamical evolution of various parameters for the nominal orbit of 2015 DB216 as presented in Table 1 (central panels) and two
representative orbits that are most different from the nominal one (see the text for details). The distance from Uranus (A panels); the value of the Hill sphere
radius of Uranus, 0.4469 au, is displayed as a red line. The resonant angle, λr (B panels). The orbital elements a (C panels, the value of the semimajor axis
of Uranus appears as a red line), e (D panels), i (E panels), and ω (F panels). The distances to the descending (thick line) and ascending nodes (dotted line)
appear in the G panels. Saturn and Neptune aphelion and perihelion distances are also shown as red lines.

et al. (2003) or Alexandersen et al. (2013) made use of a five-body
model including the Sun and the four outer planets.

As for the secular behaviour (see Fig. 5), it is markedly different
from the one described for other Uranian co-orbitals in de la Fuente
Marcos & de la Fuente Marcos (2014). The precession frequency of

the longitude of the perihelion of 2015 DB216, � = � + ω, is only
in secular resonance with Neptune and for a limited time. The value
of 	� = � − � N librates around 180◦. The absence of apsidal
corotation resonances (see Lee & Peale 2002; Beaugé, Ferraz-Mello
& Michtchenko 2003) probably translates into increased stability
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A recurring co-orbital to Uranus 1293

Figure 4. Resonant arguments σ J = 7λ − λJ − 6� (top panel), σ S = 20λ −
7λS − 13� (middle panel), and σN = λ − 2λN + � (bottom panel) plotted
against time for the time interval (−10, 30) kyr. The relative mean longitude
with respect to Uranus appears as a thick blue line. The angle σ S alternates
between circulation and asymmetric libration, indicating that the motion is
chaotic. The observed resonant evolution is consistent across control orbits.

Figure 5. Time evolution of the relative longitude of the perihelion,
	� , of 2015 DB216 with respect to the giant planets: referred to Jupiter
(� − � J), to Saturn (� − � S), to Uranus (� − �U), and to Neptune
(� − � N). The relative longitudes circulate over the entire simulated pe-
riod with the exception of that of Neptune. These results are for the nominal
orbit in Table 1.

Table 2. Equatorial coordinates and apparent magnitudes (with filter)
at discovery time of known Uranian co-orbitals and candidates (J2000.0
ecliptic and equinox). Source: MPC Database.

Object α (h:m:s) δ (◦:′:′′) m (mag)

1999 HD12 12:31:54.80 −01:03:07.9 22.9 (R)
(83982) Crantor 14:10:43.80 +01:24:45.5 19.2 (R)
2002 VG131 00:54:57.98 +12:07:52.4 22.5 (R)
2010 EU65 12:15:58.608 −02:07:16.66 21.2 (R)
2011 QF99 01:57:34.729 +14:35:44.64 22.8 (r)

2015 DB216 (SDSS, 2003) 08:29:42.21 +57:19:08.2 22.4 (V)
2015 DB216 (MLS, 2015) 11:09:56.70 +29:31:01.6 20.5 (V)

of this object when compared with other Uranian co-orbitals. Even
if evidently chaotic, its dynamical evolution appears to be relatively
stable and the object may remain in the neighbourhood of Uranus
co-orbital region for millions of years. On the other hand, during
the quasi-satellite episode observed in Fig. 3, right-hand panels, the
object exhibits Kozai-like dynamics with ω librating around 270◦

for about 100 kyr.

5 D I SCUSSI ON

Our analysis suggests that, even if submitted to chaotic dynamics,
this object may be intrinsically more stable than any of the previ-
ously known Uranian co-orbitals, but there is an additional piece
of robust evidence in favour of this interpretation. Asteroid 2015
DB216 was serendipitously discovered by a survey aimed at finding
near-Earth objects (NEOs), the Mt Lemmon Survey (MLS), that is
part of the Catalina Sky Survey (CSS)4 and precovered from obser-
vations acquired by the SDSS,5 a project aimed at creating the most
detailed three-dimensional maps of the Universe ever made after
imaging about one-third of the sky. Therefore, its observation (past
and present) was not the result of careful planning like it was the
case of the discovery of 2011 QF99 (Alexandersen et al. 2013). In
de la Fuente Marcos & de la Fuente Marcos (2014), section 8, we
studied the discovery circumstances of known Uranian co-orbitals
and candidates. All of them have been found at declinations in the
range −2◦ to +15◦ (see Table 2). In sharp contrast, 2015 DB216 was
observed at declination +57.◦3 by SDSS in 2003 and at +29.◦5 by
MLS in 2015. In de la Fuente Marcos & de la Fuente Marcos (2014),
fig. 18, an observational bias regarding the observation of Uranian
co-orbitals was pointed out, that co-orbitals reaching perigee (or
perihelion) near declination 0◦ are nearly six times more likely to
be found than those reaching perigee at declinations ± 60◦, if they
do exist.

Table 2 includes data from the Minor Planet Center (MPC)
Database6 and clearly shows that, among Uranian co-orbitals, 2015
DB216 is a puzzling outlier. Assuming that this object is not a sta-
tistical accident, its presence hints at the existence of a significant
population of objects moving in similar orbits, perhaps an order of
magnitude larger than current models predict for regular Uranian
co-orbitals. The absence of secular perturbations by Jupiter and
Uranus found for 2015 DB216 may probably explain the relative
stability of this putative population. It could be the case that – after
all – Uranus may host a large population of (transient but recurring)
co-orbitals, but their orbits may be characterized by high orbital

4 http://www.lpl.arizona.edu/css/css_facilities.html
5 http://www.sdss.org
6 http://www.minorplanetcenter.net/db_search
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Figure 6. Mean value (bottom panel) and standard deviation (top panel) of
the resonant angle, λr, as a function of the initial value of the semimajor axis.
The value of the standard deviation for a continuous uniform distribution of
maximum value 180◦ and minimum value −180◦ is also indicated, ∼104◦.

Figure 7. Same as Fig. 6 but for the initial value of the eccentricity.

inclinations. The discovery of 2015 DB216 parallels that of 83982
Crantor (2002 GO9), found by the Near-Earth Asteroid Tracking
(NEAT) project at Palomar Observatory in 2002 and precovered
from images obtained in 2001 by the Air Force Maui Optical and
Supercomputing (AMOS) observatory and SDSS.

6 E X P L O R I N G T H E O R B I TA L D O M A I N N E A R
2 0 1 5 D B 216

It could be debated that arguing on the existence of a population
of high orbital inclination Uranian co-orbitals based solely on the
discovery of 2015 DB216 is an exercise of mere speculation. In order
to investigate this interesting hypothesis further, we have studied
the evolution of a sample of 103 fictitious bodies with initial orbits
similar to that of 2015 DB216. Their orbital elements have been
generated using uniformly distributed random numbers in order to
survey the relevant region of the orbital parameter space evenly. For
each test orbit, a numerical integration for 104 yr – using the same
physical model and techniques applied in previous sections – has
been performed.

The average value (bottom panels) of the resonant angle, λr,
and its standard deviation (top panels) as a function of the initial
values of the orbital parameters a, e, and i is plotted in Figs 6–8,
respectively. The assumed ranges in a, e, and i are displayed; �

Figure 8. Same as Fig. 6 but for the initial value of the inclination.

and ω are chosen in the range 0◦–360◦. An object following a strict
passing orbit has an average value of the resonant angle close to 0◦

and its associated standard deviation is nearly 104◦ (also displayed
on the top panel of the figures as a dashed line); the value of the
variance of a continuous uniform distribution of maximum value
xmax and minimum value xmin is given by the expression (xmax −
xmin)2/12, and the mean value is (xmax + xmin)/2. Consistently with
our analysis of the dynamics of 2015 DB216 in which recurring co-
orbital episodes of various types are observed, the fictitious orbits
studied here show values of the standard deviation of the resonant
angle in obvious conflict with those expected in a non-librational
scenario. Therefore, there is a robust theoretical ground to assume
that such population of high orbital inclination Uranian recurring
co-orbitals may exist.

Fig. 8 shows that the initial value of the orbital inclination does
not have a major impact on 〈λr〉 or σλr (for the ranges of the values
of the orbital elements considered here), but Fig. 7 indicates that
the initial value of the orbital eccentricity has a major influence on
the subsequent evolution of the test orbit. For values in the range
0.1–0.3 the magnitude of the standard deviation of the resonant
angle tends to be significantly lower when recurring co-orbital be-
haviour appears. These orbits are inherently more stable as their
perihelia and aphelia are less directly perturbed. They are associ-
ated with Trojan and quasi-satellite co-orbital states.

Returning to the issue of the actual extension of the Uranian
co-orbital zone for these high-inclination, transient but recurring
co-orbitals, the distribution in semimajor axis (the initial value)
for test orbits with σλr ∈ (100◦, 108◦) (top panel) and outside that
range (bottom panel) is plotted in Fig. 9. The distribution clearly
shows that the co-orbital region approximately goes from 19.0 to
19.4 au. Outside that range in semimajor axis, most trajectories be-
come passing orbits. However, even deep inside Uranus’ co-orbital
zone not all the values of the semimajor axis are equally favourable
regarding stability. Fig. 10 shows the distribution for the average
value of the semimajor axis. The extension of the co-orbital zone is
confirmed, but those orbits with values of the osculating semimajor
axis in the range 19.1–19.2 au are far more stable.

Although the previous analysis strongly suggests that 2015 DB216

is not a statistical accident and that more temporary Uranian co-
orbitals must exist at high orbital inclinations, our relatively short
and non-extensive integrations appear to leave the question of long-
term stability open. Can we expect that objects moving in high-
inclination orbits like that of 2015 DB216 will spend 10 or 100 Myr
trapped in the 1:1 mean motion resonance with Uranus? Figs 11
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Figure 9. Distribution in initial semimajor axis for objects with standard
deviation of the resonant angle, σλr , in the range 100◦–108◦ (likely passing
orbits, top panel) and outside that range (bottom panel). Out of 103 orbits
studied, 346 have σλr ∈ (100◦, 108◦).

Figure 10. Same as Fig. 9 but for the average value of the semimajor axis.

Figure 11. Variation of the eccentricity (top panel) and the inclination
(bottom panel) over time as a function of the corresponding variation in
semimajor axis (see the text for details).

Figure 12. Average value of the semimajor axis (top panel) and the eccen-
tricity (bottom panel) as a function of the variation of the semimajor axis
over time.

and 12 suggest an answer in the affirmative. In order to study the
variation over time of a given orbital parameter, we have computed
the absolute value of the difference between the initial and final
values of the parameter and divided by the integrated time. Fig. 11
shows these drifts in a, e, and i per Myr. It is obvious that, taking
into account the span of the co-orbital zone, relatively long-term
stability is possible.

Fig. 12 shows the average values of a and e as a function of
the drift in a. From there, the most stable test orbits are found
for the ranges in 〈a〉 and 〈e〉 of 19.0–19.6 au and 0.15–0.35, respec-
tively. The range in 〈a〉 appears to be somewhat in conflict with
the values found above, but there is an additional type of co-orbital
motion that does not require libration of the resonant angle: mi-
nor bodies following passing orbits with small Jacobi constants but
still moving in unison with a host planet as described by Namouni
(1999). This orbital regime is also known as the Kozai domain be-
cause it corresponds to a Kozai resonance (Kozai 1962). Under the
Kozai resonance, both eccentricity and inclination oscillate with the
same frequency but out of phase; when the value of the eccentricity
reaches its maximum the value of the inclination is the lowest and
vice versa (

√
1 − e2 cos i ∼ constant); therefore, relatively large os-

cillations in e and i are still compatible with long-term stability in
this case. The most stable test orbit generated in our exploratory
calculations could remain virtually unchanged for time-scales well
in excess of 10 Myr (see Fig. 12) and it is not a classical (librating)
co-orbital but a fictitious object in the Kozai domain. The actual val-
ues of the semimajor axis, 19.2 au, and eccentricity, 0.32, of 2015
DB216 place this object in the most stable region of the orbital do-
main probed in Fig. 12. If such orbits represent nearly 0.3 per cent
of the ones explored in this section and one actual object has al-
ready been found, 2015 DB216, a significant number of less-stable
high-inclination, recurring Uranian co-orbitals are likely to exist.

7 C O N C L U S I O N S

In this paper, we have analysed the orbital behaviour of 2015 DB216

that is the fourth known minor body to be trapped in a 1:1 mean mo-
tion resonance with Uranus. Our numerical integrations show that it
currently moves in a complex, horseshoe-like orbit when viewed in
a frame of reference corotating with Uranus. The object exhibits res-
onance angle nodding as it undergoes recurrent co-orbital episodes
with Uranus. Its high orbital inclination clearly separates this
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object from the other three known Uranian co-orbitals and makes it
more stable. Its discovery circumstances also single this minor body
out among objects currently trapped into the 1:1 commensurability
with Uranus, hinting at the presence of a large number of similar
objects. If they are inherently more stable at higher inclinations,
that should have an impact on the population of Uranian irregular
moons. All but one are retrograde and their orbital inclinations are
in the range 139◦–167◦ or in prograde terms 41◦–13◦. Five irregular
moons out of nine have inclinations in the range 139◦–147◦. As
for the mechanism responsible for the activation of the co-orbital
states, multibody mean motion resonances trigger the transitions as
previously observed for other Uranian co-orbitals.
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